ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wetrep Unicode version

Theorem wetrep 4115
Description: An epsilon well-ordering is a transitive relation. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
wetrep  |-  ( (  _E  We  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
Distinct variable group:    x, A, y, z

Proof of Theorem wetrep
StepHypRef Expression
1 df-3an 921 . . 3  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  <->  ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A ) )
2 df-wetr 4089 . . . . . . . . 9  |-  (  _E  We  A  <->  (  _E  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) ) )
32simprbi 269 . . . . . . . 8  |-  (  _E  We  A  ->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
43r19.21bi 2449 . . . . . . 7  |-  ( (  _E  We  A  /\  x  e.  A )  ->  A. y  e.  A  A. z  e.  A  ( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
54r19.21bi 2449 . . . . . 6  |-  ( ( (  _E  We  A  /\  x  e.  A
)  /\  y  e.  A )  ->  A. z  e.  A  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
65anasss 391 . . . . 5  |-  ( (  _E  We  A  /\  ( x  e.  A  /\  y  e.  A
) )  ->  A. z  e.  A  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
76r19.21bi 2449 . . . 4  |-  ( ( (  _E  We  A  /\  ( x  e.  A  /\  y  e.  A
) )  /\  z  e.  A )  ->  (
( x  _E  y  /\  y  _E  z
)  ->  x  _E  z ) )
87anasss 391 . . 3  |-  ( (  _E  We  A  /\  ( ( x  e.  A  /\  y  e.  A )  /\  z  e.  A ) )  -> 
( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
91, 8sylan2b 281 . 2  |-  ( (  _E  We  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
( x  _E  y  /\  y  _E  z
)  ->  x  _E  z ) )
10 epel 4047 . . 3  |-  ( x  _E  y  <->  x  e.  y )
11 epel 4047 . . 3  |-  ( y  _E  z  <->  y  e.  z )
1210, 11anbi12i 447 . 2  |-  ( ( x  _E  y  /\  y  _E  z )  <->  ( x  e.  y  /\  y  e.  z )
)
13 epel 4047 . 2  |-  ( x  _E  z  <->  x  e.  z )
149, 12, 133imtr3g 202 1  |-  ( (  _E  We  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    e. wcel 1433   A.wral 2348   class class class wbr 3785    _E cep 4042    Fr wfr 4083    We wwe 4085
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-eprel 4044  df-wetr 4089
This theorem is referenced by:  wessep  4320
  Copyright terms: Public domain W3C validator