ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wepo Unicode version

Theorem wepo 4114
Description: A well-ordering is a partial ordering. (Contributed by Jim Kingdon, 23-Sep-2021.)
Assertion
Ref Expression
wepo  |-  ( ( R  We  A  /\  A  e.  V )  ->  R  Po  A )

Proof of Theorem wepo
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wefr 4113 . . . 4  |-  ( R  We  A  ->  R  Fr  A )
2 frirrg 4105 . . . 4  |-  ( ( R  Fr  A  /\  A  e.  V  /\  x  e.  A )  ->  -.  x R x )
31, 2syl3an1 1202 . . 3  |-  ( ( R  We  A  /\  A  e.  V  /\  x  e.  A )  ->  -.  x R x )
433expa 1138 . 2  |-  ( ( ( R  We  A  /\  A  e.  V
)  /\  x  e.  A )  ->  -.  x R x )
5 df-3an 921 . . 3  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  <->  ( ( x  e.  A  /\  y  e.  A
)  /\  z  e.  A ) )
6 df-wetr 4089 . . . . . . . . . 10  |-  ( R  We  A  <->  ( R  Fr  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z ) ) )
76simprbi 269 . . . . . . . . 9  |-  ( R  We  A  ->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z ) )
87adantr 270 . . . . . . . 8  |-  ( ( R  We  A  /\  A  e.  V )  ->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( ( x R y  /\  y R z )  ->  x R z ) )
98r19.21bi 2449 . . . . . . 7  |-  ( ( ( R  We  A  /\  A  e.  V
)  /\  x  e.  A )  ->  A. y  e.  A  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z ) )
109r19.21bi 2449 . . . . . 6  |-  ( ( ( ( R  We  A  /\  A  e.  V
)  /\  x  e.  A )  /\  y  e.  A )  ->  A. z  e.  A  ( (
x R y  /\  y R z )  ->  x R z ) )
1110anasss 391 . . . . 5  |-  ( ( ( R  We  A  /\  A  e.  V
)  /\  ( x  e.  A  /\  y  e.  A ) )  ->  A. z  e.  A  ( ( x R y  /\  y R z )  ->  x R z ) )
1211r19.21bi 2449 . . . 4  |-  ( ( ( ( R  We  A  /\  A  e.  V
)  /\  ( x  e.  A  /\  y  e.  A ) )  /\  z  e.  A )  ->  ( ( x R y  /\  y R z )  ->  x R z ) )
1312anasss 391 . . 3  |-  ( ( ( R  We  A  /\  A  e.  V
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  z  e.  A
) )  ->  (
( x R y  /\  y R z )  ->  x R
z ) )
145, 13sylan2b 281 . 2  |-  ( ( ( R  We  A  /\  A  e.  V
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  -> 
( ( x R y  /\  y R z )  ->  x R z ) )
154, 14ispod 4059 1  |-  ( ( R  We  A  /\  A  e.  V )  ->  R  Po  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    /\ w3a 919    e. wcel 1433   A.wral 2348   class class class wbr 3785    Po wpo 4049    Fr wfr 4083    We wwe 4085
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-po 4051  df-frfor 4086  df-frind 4087  df-wetr 4089
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator