| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpeq1 | Unicode version | ||
| Description: Equality theorem for cross product. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| xpeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2142 |
. . . 4
| |
| 2 | 1 | anbi1d 452 |
. . 3
|
| 3 | 2 | opabbidv 3844 |
. 2
|
| 4 | df-xp 4369 |
. 2
| |
| 5 | df-xp 4369 |
. 2
| |
| 6 | 3, 4, 5 | 3eqtr4g 2138 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-opab 3840 df-xp 4369 |
| This theorem is referenced by: xpeq12 4382 xpeq1i 4383 xpeq1d 4386 opthprc 4409 reseq2 4625 xpeq0r 4766 xpdisj1 4767 xpima1 4787 xpsneng 6319 xpcomeng 6325 xpdom2g 6329 |
| Copyright terms: Public domain | W3C validator |