| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opthprc | Unicode version | ||
| Description: Justification theorem for an ordered pair definition that works for any classes, including proper classes. This is a possible definition implied by the footnote in [Jech] p. 78, which says, "The sophisticated reader will not object to our use of a pair of classes." (Contributed by NM, 28-Sep-2003.) |
| Ref | Expression |
|---|---|
| opthprc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2142 |
. . . . 5
| |
| 2 | 0ex 3905 |
. . . . . . . . 9
| |
| 3 | 2 | snid 3425 |
. . . . . . . 8
|
| 4 | opelxp 4392 |
. . . . . . . 8
| |
| 5 | 3, 4 | mpbiran2 882 |
. . . . . . 7
|
| 6 | opelxp 4392 |
. . . . . . . 8
| |
| 7 | 0nep0 3939 |
. . . . . . . . . 10
| |
| 8 | 2 | elsn 3414 |
. . . . . . . . . 10
|
| 9 | 7, 8 | nemtbir 2334 |
. . . . . . . . 9
|
| 10 | 9 | bianfi 888 |
. . . . . . . 8
|
| 11 | 6, 10 | bitr4i 185 |
. . . . . . 7
|
| 12 | 5, 11 | orbi12i 713 |
. . . . . 6
|
| 13 | elun 3113 |
. . . . . 6
| |
| 14 | 9 | biorfi 697 |
. . . . . 6
|
| 15 | 12, 13, 14 | 3bitr4ri 211 |
. . . . 5
|
| 16 | opelxp 4392 |
. . . . . . . 8
| |
| 17 | 3, 16 | mpbiran2 882 |
. . . . . . 7
|
| 18 | opelxp 4392 |
. . . . . . . 8
| |
| 19 | 9 | bianfi 888 |
. . . . . . . 8
|
| 20 | 18, 19 | bitr4i 185 |
. . . . . . 7
|
| 21 | 17, 20 | orbi12i 713 |
. . . . . 6
|
| 22 | elun 3113 |
. . . . . 6
| |
| 23 | 9 | biorfi 697 |
. . . . . 6
|
| 24 | 21, 22, 23 | 3bitr4ri 211 |
. . . . 5
|
| 25 | 1, 15, 24 | 3bitr4g 221 |
. . . 4
|
| 26 | 25 | eqrdv 2079 |
. . 3
|
| 27 | eleq2 2142 |
. . . . 5
| |
| 28 | opelxp 4392 |
. . . . . . . 8
| |
| 29 | p0ex 3959 |
. . . . . . . . . . . 12
| |
| 30 | 29 | elsn 3414 |
. . . . . . . . . . 11
|
| 31 | eqcom 2083 |
. . . . . . . . . . 11
| |
| 32 | 30, 31 | bitri 182 |
. . . . . . . . . 10
|
| 33 | 7, 32 | nemtbir 2334 |
. . . . . . . . 9
|
| 34 | 33 | bianfi 888 |
. . . . . . . 8
|
| 35 | 28, 34 | bitr4i 185 |
. . . . . . 7
|
| 36 | 29 | snid 3425 |
. . . . . . . 8
|
| 37 | opelxp 4392 |
. . . . . . . 8
| |
| 38 | 36, 37 | mpbiran2 882 |
. . . . . . 7
|
| 39 | 35, 38 | orbi12i 713 |
. . . . . 6
|
| 40 | elun 3113 |
. . . . . 6
| |
| 41 | biorf 695 |
. . . . . . 7
| |
| 42 | 33, 41 | ax-mp 7 |
. . . . . 6
|
| 43 | 39, 40, 42 | 3bitr4ri 211 |
. . . . 5
|
| 44 | opelxp 4392 |
. . . . . . . 8
| |
| 45 | 33 | bianfi 888 |
. . . . . . . 8
|
| 46 | 44, 45 | bitr4i 185 |
. . . . . . 7
|
| 47 | opelxp 4392 |
. . . . . . . 8
| |
| 48 | 36, 47 | mpbiran2 882 |
. . . . . . 7
|
| 49 | 46, 48 | orbi12i 713 |
. . . . . 6
|
| 50 | elun 3113 |
. . . . . 6
| |
| 51 | biorf 695 |
. . . . . . 7
| |
| 52 | 33, 51 | ax-mp 7 |
. . . . . 6
|
| 53 | 49, 50, 52 | 3bitr4ri 211 |
. . . . 5
|
| 54 | 27, 43, 53 | 3bitr4g 221 |
. . . 4
|
| 55 | 54 | eqrdv 2079 |
. . 3
|
| 56 | 26, 55 | jca 300 |
. 2
|
| 57 | xpeq1 4377 |
. . 3
| |
| 58 | xpeq1 4377 |
. . 3
| |
| 59 | uneq12 3121 |
. . 3
| |
| 60 | 57, 58, 59 | syl2an 283 |
. 2
|
| 61 | 56, 60 | impbii 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-opab 3840 df-xp 4369 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |