ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpopth Unicode version

Theorem xpopth 5822
Description: An ordered pair theorem for members of cross products. (Contributed by NM, 20-Jun-2007.)
Assertion
Ref Expression
xpopth  |-  ( ( A  e.  ( C  X.  D )  /\  B  e.  ( R  X.  S ) )  -> 
( ( ( 1st `  A )  =  ( 1st `  B )  /\  ( 2nd `  A
)  =  ( 2nd `  B ) )  <->  A  =  B ) )

Proof of Theorem xpopth
StepHypRef Expression
1 1st2nd2 5821 . . 3  |-  ( A  e.  ( C  X.  D )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
2 1st2nd2 5821 . . 3  |-  ( B  e.  ( R  X.  S )  ->  B  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
31, 2eqeqan12d 2096 . 2  |-  ( ( A  e.  ( C  X.  D )  /\  B  e.  ( R  X.  S ) )  -> 
( A  =  B  <->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. ) )
4 1stexg 5814 . . . 4  |-  ( A  e.  ( C  X.  D )  ->  ( 1st `  A )  e. 
_V )
5 2ndexg 5815 . . . 4  |-  ( A  e.  ( C  X.  D )  ->  ( 2nd `  A )  e. 
_V )
6 opthg 3993 . . . 4  |-  ( ( ( 1st `  A
)  e.  _V  /\  ( 2nd `  A )  e.  _V )  -> 
( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
74, 5, 6syl2anc 403 . . 3  |-  ( A  e.  ( C  X.  D )  ->  ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
87adantr 270 . 2  |-  ( ( A  e.  ( C  X.  D )  /\  B  e.  ( R  X.  S ) )  -> 
( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
93, 8bitr2d 187 1  |-  ( ( A  e.  ( C  X.  D )  /\  B  e.  ( R  X.  S ) )  -> 
( ( ( 1st `  A )  =  ( 1st `  B )  /\  ( 2nd `  A
)  =  ( 2nd `  B ) )  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   _Vcvv 2601   <.cop 3401    X. cxp 4361   ` cfv 4922   1stc1st 5785   2ndc2nd 5786
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fo 4928  df-fv 4930  df-1st 5787  df-2nd 5788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator