ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2euswapdc GIF version

Theorem 2euswapdc 2032
Description: A condition allowing swap of uniqueness and existential quantifiers. (Contributed by Jim Kingdon, 7-Jul-2018.)
Assertion
Ref Expression
2euswapdc (DECID𝑥𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃!𝑥𝑦𝜑 → ∃!𝑦𝑥𝜑)))

Proof of Theorem 2euswapdc
StepHypRef Expression
1 excomim 1593 . . . . 5 (∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑)
21a1i 9 . . . 4 ((DECID𝑥𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → (∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑))
3 2moswapdc 2031 . . . . 5 (DECID𝑥𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥𝜑)))
43imp 122 . . . 4 ((DECID𝑥𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥𝜑))
52, 4anim12d 328 . . 3 ((DECID𝑥𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → ((∃𝑥𝑦𝜑 ∧ ∃*𝑥𝑦𝜑) → (∃𝑦𝑥𝜑 ∧ ∃*𝑦𝑥𝜑)))
6 eu5 1988 . . 3 (∃!𝑥𝑦𝜑 ↔ (∃𝑥𝑦𝜑 ∧ ∃*𝑥𝑦𝜑))
7 eu5 1988 . . 3 (∃!𝑦𝑥𝜑 ↔ (∃𝑦𝑥𝜑 ∧ ∃*𝑦𝑥𝜑))
85, 6, 73imtr4g 203 . 2 ((DECID𝑥𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → (∃!𝑥𝑦𝜑 → ∃!𝑦𝑥𝜑))
98ex 113 1 (DECID𝑥𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃!𝑥𝑦𝜑 → ∃!𝑦𝑥𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  DECID wdc 775  wal 1282  wex 1421  ∃!weu 1941  ∃*wmo 1942
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468
This theorem depends on definitions:  df-bi 115  df-dc 776  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945
This theorem is referenced by:  euxfr2dc  2777  2reuswapdc  2794
  Copyright terms: Public domain W3C validator