ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3mix3 GIF version

Theorem 3mix3 1109
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix3 (𝜑 → (𝜓𝜒𝜑))

Proof of Theorem 3mix3
StepHypRef Expression
1 3mix1 1107 . 2 (𝜑 → (𝜑𝜓𝜒))
2 3orrot 925 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))
31, 2sylib 120 1 (𝜑 → (𝜓𝜒𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 918
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662
This theorem depends on definitions:  df-bi 115  df-3or 920
This theorem is referenced by:  3mix3i  1112  3mix3d  1115  3jaob  1233  tpid3g  3505  funtpg  4970  nn01to3  8702  fztri3or  9058  qbtwnxr  9266
  Copyright terms: Public domain W3C validator