ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funtpg GIF version

Theorem funtpg 4970
Description: A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
Assertion
Ref Expression
funtpg (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩})

Proof of Theorem funtpg
StepHypRef Expression
1 3simpa 935 . . . 4 ((𝑋𝑈𝑌𝑉𝑍𝑊) → (𝑋𝑈𝑌𝑉))
2 3simpa 935 . . . 4 ((𝐴𝐹𝐵𝐺𝐶𝐻) → (𝐴𝐹𝐵𝐺))
3 simp1 938 . . . 4 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑋𝑌)
4 funprg 4969 . . . 4 (((𝑋𝑈𝑌𝑉) ∧ (𝐴𝐹𝐵𝐺) ∧ 𝑋𝑌) → Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩})
51, 2, 3, 4syl3an 1211 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩})
6 simp13 970 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝑊)
7 simp23 973 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐶𝐻)
8 funsng 4966 . . . 4 ((𝑍𝑊𝐶𝐻) → Fun {⟨𝑍, 𝐶⟩})
96, 7, 8syl2anc 403 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun {⟨𝑍, 𝐶⟩})
1023ad2ant2 960 . . . . . 6 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐴𝐹𝐵𝐺))
11 dmpropg 4813 . . . . . 6 ((𝐴𝐹𝐵𝐺) → dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = {𝑋, 𝑌})
1210, 11syl 14 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = {𝑋, 𝑌})
13 dmsnopg 4812 . . . . . 6 (𝐶𝐻 → dom {⟨𝑍, 𝐶⟩} = {𝑍})
147, 13syl 14 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → dom {⟨𝑍, 𝐶⟩} = {𝑍})
1512, 14ineq12d 3168 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∩ dom {⟨𝑍, 𝐶⟩}) = ({𝑋, 𝑌} ∩ {𝑍}))
16 elpri 3421 . . . . . . . 8 (𝑍 ∈ {𝑋, 𝑌} → (𝑍 = 𝑋𝑍 = 𝑌))
17 nner 2249 . . . . . . . . . . . 12 (𝑋 = 𝑍 → ¬ 𝑋𝑍)
1817eqcoms 2084 . . . . . . . . . . 11 (𝑍 = 𝑋 → ¬ 𝑋𝑍)
19 3mix2 1108 . . . . . . . . . . 11 𝑋𝑍 → (¬ 𝑋𝑌 ∨ ¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
2018, 19syl 14 . . . . . . . . . 10 (𝑍 = 𝑋 → (¬ 𝑋𝑌 ∨ ¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
21 nner 2249 . . . . . . . . . . . 12 (𝑌 = 𝑍 → ¬ 𝑌𝑍)
2221eqcoms 2084 . . . . . . . . . . 11 (𝑍 = 𝑌 → ¬ 𝑌𝑍)
23 3mix3 1109 . . . . . . . . . . 11 𝑌𝑍 → (¬ 𝑋𝑌 ∨ ¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
2422, 23syl 14 . . . . . . . . . 10 (𝑍 = 𝑌 → (¬ 𝑋𝑌 ∨ ¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
2520, 24jaoi 668 . . . . . . . . 9 ((𝑍 = 𝑋𝑍 = 𝑌) → (¬ 𝑋𝑌 ∨ ¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
26 3ianorr 1240 . . . . . . . . 9 ((¬ 𝑋𝑌 ∨ ¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍) → ¬ (𝑋𝑌𝑋𝑍𝑌𝑍))
2725, 26syl 14 . . . . . . . 8 ((𝑍 = 𝑋𝑍 = 𝑌) → ¬ (𝑋𝑌𝑋𝑍𝑌𝑍))
2816, 27syl 14 . . . . . . 7 (𝑍 ∈ {𝑋, 𝑌} → ¬ (𝑋𝑌𝑋𝑍𝑌𝑍))
2928con2i 589 . . . . . 6 ((𝑋𝑌𝑋𝑍𝑌𝑍) → ¬ 𝑍 ∈ {𝑋, 𝑌})
30 disjsn 3454 . . . . . 6 (({𝑋, 𝑌} ∩ {𝑍}) = ∅ ↔ ¬ 𝑍 ∈ {𝑋, 𝑌})
3129, 30sylibr 132 . . . . 5 ((𝑋𝑌𝑋𝑍𝑌𝑍) → ({𝑋, 𝑌} ∩ {𝑍}) = ∅)
32313ad2ant3 961 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ({𝑋, 𝑌} ∩ {𝑍}) = ∅)
3315, 32eqtrd 2113 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∩ dom {⟨𝑍, 𝐶⟩}) = ∅)
34 funun 4964 . . 3 (((Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∧ Fun {⟨𝑍, 𝐶⟩}) ∧ (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∩ dom {⟨𝑍, 𝐶⟩}) = ∅) → Fun ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}))
355, 9, 33, 34syl21anc 1168 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}))
36 df-tp 3406 . . 3 {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩})
3736funeqi 4942 . 2 (Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} ↔ Fun ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}))
3835, 37sylibr 132 1 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wo 661  w3o 918  w3a 919   = wceq 1284  wcel 1433  wne 2245  cun 2971  cin 2972  c0 3251  {csn 3398  {cpr 3399  {ctp 3400  cop 3401  dom cdm 4363  Fun wfun 4916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-tp 3406  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-fun 4924
This theorem is referenced by:  fntpg  4975
  Copyright terms: Public domain W3C validator