ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn01to3 GIF version

Theorem nn01to3 8702
Description: A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018.)
Assertion
Ref Expression
nn01to3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))

Proof of Theorem nn01to3
StepHypRef Expression
1 simp2 939 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 1 ≤ 𝑁)
2 simp1 938 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 𝑁 ∈ ℕ0)
3 1z 8377 . . . . . . . . 9 1 ∈ ℤ
4 nn0z 8371 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
5 zleloe 8398 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ≤ 𝑁 ↔ (1 < 𝑁 ∨ 1 = 𝑁)))
63, 4, 5sylancr 405 . . . . . . . 8 (𝑁 ∈ ℕ0 → (1 ≤ 𝑁 ↔ (1 < 𝑁 ∨ 1 = 𝑁)))
72, 6syl 14 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (1 ≤ 𝑁 ↔ (1 < 𝑁 ∨ 1 = 𝑁)))
81, 7mpbid 145 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (1 < 𝑁 ∨ 1 = 𝑁))
9 1nn0 8304 . . . . . . . . . . 11 1 ∈ ℕ0
10 nn0ltp1le 8413 . . . . . . . . . . 11 ((1 ∈ ℕ0𝑁 ∈ ℕ0) → (1 < 𝑁 ↔ (1 + 1) ≤ 𝑁))
119, 10mpan 414 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (1 < 𝑁 ↔ (1 + 1) ≤ 𝑁))
12 df-2 8098 . . . . . . . . . . 11 2 = (1 + 1)
1312breq1i 3792 . . . . . . . . . 10 (2 ≤ 𝑁 ↔ (1 + 1) ≤ 𝑁)
1411, 13syl6bbr 196 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (1 < 𝑁 ↔ 2 ≤ 𝑁))
15 2z 8379 . . . . . . . . . 10 2 ∈ ℤ
16 zleloe 8398 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
1715, 4, 16sylancr 405 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
1814, 17bitrd 186 . . . . . . . 8 (𝑁 ∈ ℕ0 → (1 < 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
1918orbi1d 737 . . . . . . 7 (𝑁 ∈ ℕ0 → ((1 < 𝑁 ∨ 1 = 𝑁) ↔ ((2 < 𝑁 ∨ 2 = 𝑁) ∨ 1 = 𝑁)))
202, 19syl 14 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → ((1 < 𝑁 ∨ 1 = 𝑁) ↔ ((2 < 𝑁 ∨ 2 = 𝑁) ∨ 1 = 𝑁)))
218, 20mpbid 145 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → ((2 < 𝑁 ∨ 2 = 𝑁) ∨ 1 = 𝑁))
2221orcomd 680 . . . 4 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (1 = 𝑁 ∨ (2 < 𝑁 ∨ 2 = 𝑁)))
23 orcom 679 . . . . 5 ((2 < 𝑁 ∨ 2 = 𝑁) ↔ (2 = 𝑁 ∨ 2 < 𝑁))
2423orbi2i 711 . . . 4 ((1 = 𝑁 ∨ (2 < 𝑁 ∨ 2 = 𝑁)) ↔ (1 = 𝑁 ∨ (2 = 𝑁 ∨ 2 < 𝑁)))
2522, 24sylib 120 . . 3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (1 = 𝑁 ∨ (2 = 𝑁 ∨ 2 < 𝑁)))
26 3orass 922 . . 3 ((1 = 𝑁 ∨ 2 = 𝑁 ∨ 2 < 𝑁) ↔ (1 = 𝑁 ∨ (2 = 𝑁 ∨ 2 < 𝑁)))
2725, 26sylibr 132 . 2 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (1 = 𝑁 ∨ 2 = 𝑁 ∨ 2 < 𝑁))
28 3mix1 1107 . . . . 5 (𝑁 = 1 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
2928eqcoms 2084 . . . 4 (1 = 𝑁 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
3029a1i 9 . . 3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (1 = 𝑁 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)))
31 3mix2 1108 . . . . 5 (𝑁 = 2 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
3231eqcoms 2084 . . . 4 (2 = 𝑁 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
3332a1i 9 . . 3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (2 = 𝑁 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)))
34 simp3 940 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 𝑁 ≤ 3)
3534biantrurd 299 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (3 ≤ 𝑁 ↔ (𝑁 ≤ 3 ∧ 3 ≤ 𝑁)))
36 2nn0 8305 . . . . . . . 8 2 ∈ ℕ0
37 nn0ltp1le 8413 . . . . . . . 8 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2 < 𝑁 ↔ (2 + 1) ≤ 𝑁))
3836, 37mpan 414 . . . . . . 7 (𝑁 ∈ ℕ0 → (2 < 𝑁 ↔ (2 + 1) ≤ 𝑁))
39 df-3 8099 . . . . . . . 8 3 = (2 + 1)
4039breq1i 3792 . . . . . . 7 (3 ≤ 𝑁 ↔ (2 + 1) ≤ 𝑁)
4138, 40syl6bbr 196 . . . . . 6 (𝑁 ∈ ℕ0 → (2 < 𝑁 ↔ 3 ≤ 𝑁))
422, 41syl 14 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (2 < 𝑁 ↔ 3 ≤ 𝑁))
432nn0red 8342 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 𝑁 ∈ ℝ)
44 3re 8113 . . . . . 6 3 ∈ ℝ
45 letri3 7192 . . . . . 6 ((𝑁 ∈ ℝ ∧ 3 ∈ ℝ) → (𝑁 = 3 ↔ (𝑁 ≤ 3 ∧ 3 ≤ 𝑁)))
4643, 44, 45sylancl 404 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 3 ↔ (𝑁 ≤ 3 ∧ 3 ≤ 𝑁)))
4735, 42, 463bitr4d 218 . . . 4 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (2 < 𝑁𝑁 = 3))
48 3mix3 1109 . . . 4 (𝑁 = 3 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
4947, 48syl6bi 161 . . 3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (2 < 𝑁 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)))
5030, 33, 493jaod 1235 . 2 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → ((1 = 𝑁 ∨ 2 = 𝑁 ∨ 2 < 𝑁) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)))
5127, 50mpd 13 1 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 661  w3o 918  w3a 919   = wceq 1284  wcel 1433   class class class wbr 3785  (class class class)co 5532  cr 6980  1c1 6982   + caddc 6984   < clt 7153  cle 7154  2c2 8089  3c3 8090  0cn0 8288  cz 8351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-2 8098  df-3 8099  df-n0 8289  df-z 8352
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator