![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 6p3e9 | GIF version |
Description: 6 + 3 = 9. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
6p3e9 | ⊢ (6 + 3) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 8099 | . . . 4 ⊢ 3 = (2 + 1) | |
2 | 1 | oveq2i 5543 | . . 3 ⊢ (6 + 3) = (6 + (2 + 1)) |
3 | 6cn 8121 | . . . 4 ⊢ 6 ∈ ℂ | |
4 | 2cn 8110 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | ax-1cn 7069 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 7127 | . . 3 ⊢ ((6 + 2) + 1) = (6 + (2 + 1)) |
7 | 2, 6 | eqtr4i 2104 | . 2 ⊢ (6 + 3) = ((6 + 2) + 1) |
8 | df-9 8105 | . . 3 ⊢ 9 = (8 + 1) | |
9 | 6p2e8 8181 | . . . 4 ⊢ (6 + 2) = 8 | |
10 | 9 | oveq1i 5542 | . . 3 ⊢ ((6 + 2) + 1) = (8 + 1) |
11 | 8, 10 | eqtr4i 2104 | . 2 ⊢ 9 = ((6 + 2) + 1) |
12 | 7, 11 | eqtr4i 2104 | 1 ⊢ (6 + 3) = 9 |
Colors of variables: wff set class |
Syntax hints: = wceq 1284 (class class class)co 5532 1c1 6982 + caddc 6984 2c2 8089 3c3 8090 6c6 8093 8c8 8095 9c9 8096 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-addrcl 7073 ax-addass 7078 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-iota 4887 df-fv 4930 df-ov 5535 df-2 8098 df-3 8099 df-4 8100 df-5 8101 df-6 8102 df-7 8103 df-8 8104 df-9 8105 |
This theorem is referenced by: 3t3e9 8189 6p4e10 8548 ex-gcd 10568 |
Copyright terms: Public domain | W3C validator |