ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6p3e9 GIF version

Theorem 6p3e9 8182
Description: 6 + 3 = 9. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
6p3e9 (6 + 3) = 9

Proof of Theorem 6p3e9
StepHypRef Expression
1 df-3 8099 . . . 4 3 = (2 + 1)
21oveq2i 5543 . . 3 (6 + 3) = (6 + (2 + 1))
3 6cn 8121 . . . 4 6 ∈ ℂ
4 2cn 8110 . . . 4 2 ∈ ℂ
5 ax-1cn 7069 . . . 4 1 ∈ ℂ
63, 4, 5addassi 7127 . . 3 ((6 + 2) + 1) = (6 + (2 + 1))
72, 6eqtr4i 2104 . 2 (6 + 3) = ((6 + 2) + 1)
8 df-9 8105 . . 3 9 = (8 + 1)
9 6p2e8 8181 . . . 4 (6 + 2) = 8
109oveq1i 5542 . . 3 ((6 + 2) + 1) = (8 + 1)
118, 10eqtr4i 2104 . 2 9 = ((6 + 2) + 1)
127, 11eqtr4i 2104 1 (6 + 3) = 9
Colors of variables: wff set class
Syntax hints:   = wceq 1284  (class class class)co 5532  1c1 6982   + caddc 6984  2c2 8089  3c3 8090  6c6 8093  8c8 8095  9c9 8096
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-addrcl 7073  ax-addass 7078
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-iota 4887  df-fv 4930  df-ov 5535  df-2 8098  df-3 8099  df-4 8100  df-5 8101  df-6 8102  df-7 8103  df-8 8104  df-9 8105
This theorem is referenced by:  3t3e9  8189  6p4e10  8548  ex-gcd  10568
  Copyright terms: Public domain W3C validator