![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addassi | GIF version |
Description: Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
axi.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
addassi | ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | addass 7103 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1268 | 1 ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1284 ∈ wcel 1433 (class class class)co 5532 ℂcc 6979 + caddc 6984 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-addass 7078 |
This theorem depends on definitions: df-bi 115 df-3an 921 |
This theorem is referenced by: 2p2e4 8159 3p2e5 8173 3p3e6 8174 4p2e6 8175 4p3e7 8176 4p4e8 8177 5p2e7 8178 5p3e8 8179 5p4e9 8180 6p2e8 8181 6p3e9 8182 7p2e9 8183 numsuc 8490 nummac 8521 numaddc 8524 6p5lem 8546 5p5e10 8547 6p4e10 8548 7p3e10 8551 8p2e10 8556 binom2i 9583 resqrexlemover 9896 3dvdsdec 10264 3dvds2dec 10265 |
Copyright terms: Public domain | W3C validator |