![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abeq0 | GIF version |
Description: Condition for a class abstraction to be empty. (Contributed by Jim Kingdon, 12-Aug-2018.) |
Ref | Expression |
---|---|
abeq0 | ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbn 1867 | . . 3 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | |
2 | 1 | albii 1399 | . 2 ⊢ (∀𝑦[𝑦 / 𝑥] ¬ 𝜑 ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑) |
3 | nfv 1461 | . . 3 ⊢ Ⅎ𝑦 ¬ 𝜑 | |
4 | 3 | sb8 1777 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦[𝑦 / 𝑥] ¬ 𝜑) |
5 | eq0 3266 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
6 | df-clab 2068 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
7 | 6 | notbii 626 | . . . 4 ⊢ (¬ 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ¬ [𝑦 / 𝑥]𝜑) |
8 | 7 | albii 1399 | . . 3 ⊢ (∀𝑦 ¬ 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑) |
9 | 5, 8 | bitri 182 | . 2 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑) |
10 | 2, 4, 9 | 3bitr4ri 211 | 1 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 103 ∀wal 1282 = wceq 1284 ∈ wcel 1433 [wsb 1685 {cab 2067 ∅c0 3251 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-dif 2975 df-nul 3252 |
This theorem is referenced by: opprc 3591 |
Copyright terms: Public domain | W3C validator |