ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq0 GIF version

Theorem abeq0 3275
Description: Condition for a class abstraction to be empty. (Contributed by Jim Kingdon, 12-Aug-2018.)
Assertion
Ref Expression
abeq0 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)

Proof of Theorem abeq0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbn 1867 . . 3 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
21albii 1399 . 2 (∀𝑦[𝑦 / 𝑥] ¬ 𝜑 ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑)
3 nfv 1461 . . 3 𝑦 ¬ 𝜑
43sb8 1777 . 2 (∀𝑥 ¬ 𝜑 ↔ ∀𝑦[𝑦 / 𝑥] ¬ 𝜑)
5 eq0 3266 . . 3 ({𝑥𝜑} = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ {𝑥𝜑})
6 df-clab 2068 . . . . 5 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
76notbii 626 . . . 4 𝑦 ∈ {𝑥𝜑} ↔ ¬ [𝑦 / 𝑥]𝜑)
87albii 1399 . . 3 (∀𝑦 ¬ 𝑦 ∈ {𝑥𝜑} ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑)
95, 8bitri 182 . 2 ({𝑥𝜑} = ∅ ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑)
102, 4, 93bitr4ri 211 1 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 103  wal 1282   = wceq 1284  wcel 1433  [wsb 1685  {cab 2067  c0 3251
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-dif 2975  df-nul 3252
This theorem is referenced by:  opprc  3591
  Copyright terms: Public domain W3C validator