| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbn | GIF version | ||
| Description: Negation inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.) |
| Ref | Expression |
|---|---|
| sbn | ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbnv 1809 | . . . 4 ⊢ ([𝑧 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑧 / 𝑥]𝜑) | |
| 2 | 1 | sbbii 1688 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥] ¬ 𝜑 ↔ [𝑦 / 𝑧] ¬ [𝑧 / 𝑥]𝜑) |
| 3 | sbnv 1809 | . . 3 ⊢ ([𝑦 / 𝑧] ¬ [𝑧 / 𝑥]𝜑 ↔ ¬ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑) | |
| 4 | 2, 3 | bitri 182 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑) |
| 5 | ax-17 1459 | . . . 4 ⊢ (𝜑 → ∀𝑧𝜑) | |
| 6 | 5 | hbn 1584 | . . 3 ⊢ (¬ 𝜑 → ∀𝑧 ¬ 𝜑) |
| 7 | 6 | sbco2v 1862 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥] ¬ 𝜑 ↔ [𝑦 / 𝑥] ¬ 𝜑) |
| 8 | 5 | sbco2v 1862 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| 9 | 8 | notbii 626 | . 2 ⊢ (¬ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) |
| 10 | 4, 7, 9 | 3bitr3i 208 | 1 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 103 [wsb 1685 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 |
| This theorem is referenced by: sbcng 2854 difab 3233 rabeq0 3274 abeq0 3275 |
| Copyright terms: Public domain | W3C validator |