| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abf | GIF version | ||
| Description: A class builder with a false argument is empty. (Contributed by NM, 20-Jan-2012.) |
| Ref | Expression |
|---|---|
| abf.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| abf | ⊢ {𝑥 ∣ 𝜑} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abf.1 | . . . 4 ⊢ ¬ 𝜑 | |
| 2 | 1 | pm2.21i 607 | . . 3 ⊢ (𝜑 → 𝑥 ∈ ∅) |
| 3 | 2 | abssi 3069 | . 2 ⊢ {𝑥 ∣ 𝜑} ⊆ ∅ |
| 4 | ss0 3284 | . 2 ⊢ ({𝑥 ∣ 𝜑} ⊆ ∅ → {𝑥 ∣ 𝜑} = ∅) | |
| 5 | 3, 4 | ax-mp 7 | 1 ⊢ {𝑥 ∣ 𝜑} = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1284 ∈ wcel 1433 {cab 2067 ⊆ wss 2973 ∅c0 3251 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-dif 2975 df-in 2979 df-ss 2986 df-nul 3252 |
| This theorem is referenced by: csbprc 3289 mpt20 5594 |
| Copyright terms: Public domain | W3C validator |