![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abid2 | GIF version |
Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
abid2 | ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 169 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) | |
2 | 1 | abbi2i 2193 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} |
3 | 2 | eqcomi 2085 | 1 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1284 ∈ wcel 1433 {cab 2067 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 |
This theorem is referenced by: csbid 2915 abss 3063 ssab 3064 abssi 3069 notab 3234 inrab2 3237 dfrab2 3239 dfrab3 3240 notrab 3241 eusn 3466 dfopg 3568 iunid 3733 csbexga 3906 imai 4701 dffv4g 5195 frec0g 6006 euen1b 6306 |
Copyright terms: Public domain | W3C validator |