ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abid2 GIF version

Theorem abid2 2199
Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 26-Dec-1993.)
Assertion
Ref Expression
abid2 {𝑥𝑥𝐴} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem abid2
StepHypRef Expression
1 biid 169 . . 3 (𝑥𝐴𝑥𝐴)
21abbi2i 2193 . 2 𝐴 = {𝑥𝑥𝐴}
32eqcomi 2085 1 {𝑥𝑥𝐴} = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1284  wcel 1433  {cab 2067
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-11 1437  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077
This theorem is referenced by:  csbid  2915  abss  3063  ssab  3064  abssi  3069  notab  3234  inrab2  3237  dfrab2  3239  dfrab3  3240  notrab  3241  eusn  3466  dfopg  3568  iunid  3733  csbexga  3906  imai  4701  dffv4g  5195  frec0g  6006  euen1b  6306
  Copyright terms: Public domain W3C validator