![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbexga | GIF version |
Description: The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbexga | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 𝐵 ∈ 𝑊) → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 2909 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
2 | abid2 2199 | . . . . . . 7 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐵} = 𝐵 | |
3 | elex 2610 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
4 | 2, 3 | syl5eqel 2165 | . . . . . 6 ⊢ (𝐵 ∈ 𝑊 → {𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V) |
5 | 4 | alimi 1384 | . . . . 5 ⊢ (∀𝑥 𝐵 ∈ 𝑊 → ∀𝑥{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V) |
6 | spsbc 2826 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V → [𝐴 / 𝑥]{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V)) | |
7 | 5, 6 | syl5 32 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 𝐵 ∈ 𝑊 → [𝐴 / 𝑥]{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V)) |
8 | 7 | imp 122 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 𝐵 ∈ 𝑊) → [𝐴 / 𝑥]{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V) |
9 | nfcv 2219 | . . . . 5 ⊢ Ⅎ𝑥V | |
10 | 9 | sbcabel 2895 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V ↔ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ∈ V)) |
11 | 10 | adantr 270 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥]{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V ↔ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ∈ V)) |
12 | 8, 11 | mpbid 145 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 𝐵 ∈ 𝑊) → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ∈ V) |
13 | 1, 12 | syl5eqel 2165 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 𝐵 ∈ 𝑊) → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∀wal 1282 ∈ wcel 1433 {cab 2067 Vcvv 2601 [wsbc 2815 ⦋csb 2908 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-sbc 2816 df-csb 2909 |
This theorem is referenced by: csbexa 3907 |
Copyright terms: Public domain | W3C validator |