ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbid GIF version

Theorem csbid 2915
Description: Analog of sbid 1697 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbid 𝑥 / 𝑥𝐴 = 𝐴

Proof of Theorem csbid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 2909 . 2 𝑥 / 𝑥𝐴 = {𝑦[𝑥 / 𝑥]𝑦𝐴}
2 sbcid 2830 . . 3 ([𝑥 / 𝑥]𝑦𝐴𝑦𝐴)
32abbii 2194 . 2 {𝑦[𝑥 / 𝑥]𝑦𝐴} = {𝑦𝑦𝐴}
4 abid2 2199 . 2 {𝑦𝑦𝐴} = 𝐴
51, 3, 43eqtri 2105 1 𝑥 / 𝑥𝐴 = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1284  wcel 1433  {cab 2067  [wsbc 2815  csb 2908
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-11 1437  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-sbc 2816  df-csb 2909
This theorem is referenced by:  csbeq1a  2916  fvmpt2  5275
  Copyright terms: Public domain W3C validator