| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > absneu | GIF version | ||
| Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.) |
| Ref | Expression |
|---|---|
| absneu | ⊢ ((𝐴 ∈ 𝑉 ∧ {𝑥 ∣ 𝜑} = {𝐴}) → ∃!𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3409 | . . . . 5 ⊢ (𝑦 = 𝐴 → {𝑦} = {𝐴}) | |
| 2 | 1 | eqeq2d 2092 | . . . 4 ⊢ (𝑦 = 𝐴 → ({𝑥 ∣ 𝜑} = {𝑦} ↔ {𝑥 ∣ 𝜑} = {𝐴})) |
| 3 | 2 | spcegv 2686 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({𝑥 ∣ 𝜑} = {𝐴} → ∃𝑦{𝑥 ∣ 𝜑} = {𝑦})) |
| 4 | 3 | imp 122 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝑥 ∣ 𝜑} = {𝐴}) → ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
| 5 | euabsn2 3461 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
| 6 | 4, 5 | sylibr 132 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝑥 ∣ 𝜑} = {𝐴}) → ∃!𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∃wex 1421 ∈ wcel 1433 ∃!weu 1941 {cab 2067 {csn 3398 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-sn 3404 |
| This theorem is referenced by: rabsneu 3465 |
| Copyright terms: Public domain | W3C validator |