| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > chvarv | GIF version | ||
| Description: Implicit substitution of 𝑦 for 𝑥 into a theorem. (Contributed by NM, 20-Apr-1994.) |
| Ref | Expression |
|---|---|
| chv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| chv.2 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| chvarv | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | spv 1781 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) |
| 3 | chv.2 | . 2 ⊢ 𝜑 | |
| 4 | 2, 3 | mpg 1380 | 1 ⊢ 𝜓 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 |
| This theorem is referenced by: axext3 2064 axsep2 3897 tz6.12f 5223 tfrlem3-2 5950 bdsep2 10677 strcoll2 10778 |
| Copyright terms: Public domain | W3C validator |