| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdsepnfALT | GIF version | ||
| Description: Alternate proof of bdsepnf 10679, not using bdsepnft 10678. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bdsepnf.nf | ⊢ Ⅎ𝑏𝜑 |
| bdsepnf.1 | ⊢ BOUNDED 𝜑 |
| Ref | Expression |
|---|---|
| bdsepnfALT | ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdsepnf.1 | . . 3 ⊢ BOUNDED 𝜑 | |
| 2 | 1 | bdsep2 10677 | . 2 ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| 3 | nfv 1461 | . . . . 5 ⊢ Ⅎ𝑏 𝑥 ∈ 𝑦 | |
| 4 | nfv 1461 | . . . . . 6 ⊢ Ⅎ𝑏 𝑥 ∈ 𝑎 | |
| 5 | bdsepnf.nf | . . . . . 6 ⊢ Ⅎ𝑏𝜑 | |
| 6 | 4, 5 | nfan 1497 | . . . . 5 ⊢ Ⅎ𝑏(𝑥 ∈ 𝑎 ∧ 𝜑) |
| 7 | 3, 6 | nfbi 1521 | . . . 4 ⊢ Ⅎ𝑏(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| 8 | 7 | nfal 1508 | . . 3 ⊢ Ⅎ𝑏∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| 9 | nfv 1461 | . . 3 ⊢ Ⅎ𝑦∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) | |
| 10 | elequ2 1641 | . . . . 5 ⊢ (𝑦 = 𝑏 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑏)) | |
| 11 | 10 | bibi1d 231 | . . . 4 ⊢ (𝑦 = 𝑏 → ((𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) ↔ (𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)))) |
| 12 | 11 | albidv 1745 | . . 3 ⊢ (𝑦 = 𝑏 → (∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) ↔ ∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)))) |
| 13 | 8, 9, 12 | cbvex 1679 | . 2 ⊢ (∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) ↔ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑))) |
| 14 | 2, 13 | mpbi 143 | 1 ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 102 ↔ wb 103 ∀wal 1282 Ⅎwnf 1389 ∃wex 1421 BOUNDED wbd 10603 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-bdsep 10675 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-cleq 2074 df-clel 2077 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |