![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elequ2 | GIF version |
Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
elequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-14 1445 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | |
2 | ax-14 1445 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) | |
3 | 2 | equcoms 1634 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) |
4 | 1, 3 | impbid 127 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-gen 1378 ax-ie2 1423 ax-8 1435 ax-14 1445 ax-17 1459 ax-i9 1463 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: elsb4 1894 dveel2 1938 axext3 2064 axext4 2065 bm1.1 2066 bm1.3ii 3899 nalset 3908 zfun 4189 fv3 5218 tfrlemisucaccv 5962 bdsepnft 10678 bdsepnfALT 10680 bdbm1.3ii 10682 bj-nalset 10686 bj-nnelirr 10748 strcollnft 10779 strcollnfALT 10781 |
Copyright terms: Public domain | W3C validator |