Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-om GIF version

Theorem bj-om 10732
Description: A set is equal to ω if and only if it is the smallest inductive set. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-om (𝐴𝑉 → (𝐴 = ω ↔ (Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥))))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem bj-om
StepHypRef Expression
1 bj-omind 10729 . . . 4 Ind ω
2 bj-indeq 10724 . . . 4 (𝐴 = ω → (Ind 𝐴 ↔ Ind ω))
31, 2mpbiri 166 . . 3 (𝐴 = ω → Ind 𝐴)
4 vex 2604 . . . . . 6 𝑥 ∈ V
5 bj-omssind 10730 . . . . . 6 (𝑥 ∈ V → (Ind 𝑥 → ω ⊆ 𝑥))
64, 5ax-mp 7 . . . . 5 (Ind 𝑥 → ω ⊆ 𝑥)
7 sseq1 3020 . . . . 5 (𝐴 = ω → (𝐴𝑥 ↔ ω ⊆ 𝑥))
86, 7syl5ibr 154 . . . 4 (𝐴 = ω → (Ind 𝑥𝐴𝑥))
98alrimiv 1795 . . 3 (𝐴 = ω → ∀𝑥(Ind 𝑥𝐴𝑥))
103, 9jca 300 . 2 (𝐴 = ω → (Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥)))
11 bj-ssom 10731 . . . . . . 7 (∀𝑥(Ind 𝑥𝐴𝑥) ↔ 𝐴 ⊆ ω)
1211biimpi 118 . . . . . 6 (∀𝑥(Ind 𝑥𝐴𝑥) → 𝐴 ⊆ ω)
1312adantl 271 . . . . 5 ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥)) → 𝐴 ⊆ ω)
1413a1i 9 . . . 4 (𝐴𝑉 → ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥)) → 𝐴 ⊆ ω))
15 bj-omssind 10730 . . . . 5 (𝐴𝑉 → (Ind 𝐴 → ω ⊆ 𝐴))
1615adantrd 273 . . . 4 (𝐴𝑉 → ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥)) → ω ⊆ 𝐴))
1714, 16jcad 301 . . 3 (𝐴𝑉 → ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥)) → (𝐴 ⊆ ω ∧ ω ⊆ 𝐴)))
18 eqss 3014 . . 3 (𝐴 = ω ↔ (𝐴 ⊆ ω ∧ ω ⊆ 𝐴))
1917, 18syl6ibr 160 . 2 (𝐴𝑉 → ((Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥)) → 𝐴 = ω))
2010, 19impbid2 141 1 (𝐴𝑉 → (𝐴 = ω ↔ (Ind 𝐴 ∧ ∀𝑥(Ind 𝑥𝐴𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1282   = wceq 1284  wcel 1433  Vcvv 2601  wss 2973  ωcom 4331  Ind wind 10721
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-nul 3904  ax-pr 3964  ax-un 4188  ax-bd0 10604  ax-bdor 10607  ax-bdex 10610  ax-bdeq 10611  ax-bdel 10612  ax-bdsb 10613  ax-bdsep 10675
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-sn 3404  df-pr 3405  df-uni 3602  df-int 3637  df-suc 4126  df-iom 4332  df-bdc 10632  df-bj-ind 10722
This theorem is referenced by:  bj-2inf  10733  bj-inf2vn  10769  bj-inf2vn2  10770
  Copyright terms: Public domain W3C validator