![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-unexg | GIF version |
Description: unexg 4196 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-unexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 3119 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦)) | |
2 | eleq1 2141 | . . 3 ⊢ ((𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦) → ((𝑥 ∪ 𝑦) ∈ V ↔ (𝐴 ∪ 𝑦) ∈ V)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 ∪ 𝑦) ∈ V ↔ (𝐴 ∪ 𝑦) ∈ V)) |
4 | uneq2 3120 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
5 | eleq1 2141 | . . 3 ⊢ ((𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵) → ((𝐴 ∪ 𝑦) ∈ V ↔ (𝐴 ∪ 𝐵) ∈ V)) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝑦 = 𝐵 → ((𝐴 ∪ 𝑦) ∈ V ↔ (𝐴 ∪ 𝐵) ∈ V)) |
7 | vex 2604 | . . 3 ⊢ 𝑥 ∈ V | |
8 | vex 2604 | . . 3 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | bj-unex 10710 | . 2 ⊢ (𝑥 ∪ 𝑦) ∈ V |
10 | 3, 6, 9 | vtocl2g 2662 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∈ wcel 1433 Vcvv 2601 ∪ cun 2971 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-pr 3964 ax-un 4188 ax-bd0 10604 ax-bdor 10607 ax-bdex 10610 ax-bdeq 10611 ax-bdel 10612 ax-bdsb 10613 ax-bdsep 10675 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-uni 3602 df-bdc 10632 |
This theorem is referenced by: bj-sucexg 10713 |
Copyright terms: Public domain | W3C validator |