Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-unexg GIF version

Theorem bj-unexg 10712
Description: unexg 4196 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-unexg ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)

Proof of Theorem bj-unexg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 3119 . . 3 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
2 eleq1 2141 . . 3 ((𝑥𝑦) = (𝐴𝑦) → ((𝑥𝑦) ∈ V ↔ (𝐴𝑦) ∈ V))
31, 2syl 14 . 2 (𝑥 = 𝐴 → ((𝑥𝑦) ∈ V ↔ (𝐴𝑦) ∈ V))
4 uneq2 3120 . . 3 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
5 eleq1 2141 . . 3 ((𝐴𝑦) = (𝐴𝐵) → ((𝐴𝑦) ∈ V ↔ (𝐴𝐵) ∈ V))
64, 5syl 14 . 2 (𝑦 = 𝐵 → ((𝐴𝑦) ∈ V ↔ (𝐴𝐵) ∈ V))
7 vex 2604 . . 3 𝑥 ∈ V
8 vex 2604 . . 3 𝑦 ∈ V
97, 8bj-unex 10710 . 2 (𝑥𝑦) ∈ V
103, 6, 9vtocl2g 2662 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  Vcvv 2601  cun 2971
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-pr 3964  ax-un 4188  ax-bd0 10604  ax-bdor 10607  ax-bdex 10610  ax-bdeq 10611  ax-bdel 10612  ax-bdsb 10613  ax-bdsep 10675
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-un 2977  df-sn 3404  df-pr 3405  df-uni 3602  df-bdc 10632
This theorem is referenced by:  bj-sucexg  10713
  Copyright terms: Public domain W3C validator