Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-sucexg GIF version

Theorem bj-sucexg 10713
Description: sucexg 4242 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-sucexg (𝐴𝑉 → suc 𝐴 ∈ V)

Proof of Theorem bj-sucexg
StepHypRef Expression
1 bj-snexg 10703 . . . 4 (𝐴𝑉 → {𝐴} ∈ V)
21pm4.71i 383 . . 3 (𝐴𝑉 ↔ (𝐴𝑉 ∧ {𝐴} ∈ V))
32biimpi 118 . 2 (𝐴𝑉 → (𝐴𝑉 ∧ {𝐴} ∈ V))
4 bj-unexg 10712 . 2 ((𝐴𝑉 ∧ {𝐴} ∈ V) → (𝐴 ∪ {𝐴}) ∈ V)
5 df-suc 4126 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
65eleq1i 2144 . . 3 (suc 𝐴 ∈ V ↔ (𝐴 ∪ {𝐴}) ∈ V)
76biimpri 131 . 2 ((𝐴 ∪ {𝐴}) ∈ V → suc 𝐴 ∈ V)
83, 4, 73syl 17 1 (𝐴𝑉 → suc 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wcel 1433  Vcvv 2601  cun 2971  {csn 3398  suc csuc 4120
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-pr 3964  ax-un 4188  ax-bd0 10604  ax-bdor 10607  ax-bdex 10610  ax-bdeq 10611  ax-bdel 10612  ax-bdsb 10613  ax-bdsep 10675
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-un 2977  df-sn 3404  df-pr 3405  df-uni 3602  df-suc 4126  df-bdc 10632
This theorem is referenced by:  bj-sucex  10714
  Copyright terms: Public domain W3C validator