![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-zfpair2 | GIF version |
Description: Proof of zfpair2 3965 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-zfpair2 | ⊢ {𝑥, 𝑦} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-bdeq 10611 | . . . . 5 ⊢ BOUNDED 𝑤 = 𝑥 | |
2 | ax-bdeq 10611 | . . . . 5 ⊢ BOUNDED 𝑤 = 𝑦 | |
3 | 1, 2 | ax-bdor 10607 | . . . 4 ⊢ BOUNDED (𝑤 = 𝑥 ∨ 𝑤 = 𝑦) |
4 | ax-pr 3964 | . . . 4 ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | |
5 | 3, 4 | bdbm1.3ii 10682 | . . 3 ⊢ ∃𝑧∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦)) |
6 | dfcleq 2075 | . . . . 5 ⊢ (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦})) | |
7 | vex 2604 | . . . . . . . 8 ⊢ 𝑤 ∈ V | |
8 | 7 | elpr 3419 | . . . . . . 7 ⊢ (𝑤 ∈ {𝑥, 𝑦} ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦)) |
9 | 8 | bibi2i 225 | . . . . . 6 ⊢ ((𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦}) ↔ (𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))) |
10 | 9 | albii 1399 | . . . . 5 ⊢ (∀𝑤(𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦}) ↔ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))) |
11 | 6, 10 | bitri 182 | . . . 4 ⊢ (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))) |
12 | 11 | exbii 1536 | . . 3 ⊢ (∃𝑧 𝑧 = {𝑥, 𝑦} ↔ ∃𝑧∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))) |
13 | 5, 12 | mpbir 144 | . 2 ⊢ ∃𝑧 𝑧 = {𝑥, 𝑦} |
14 | 13 | issetri 2608 | 1 ⊢ {𝑥, 𝑦} ∈ V |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 ∨ wo 661 ∀wal 1282 = wceq 1284 ∃wex 1421 ∈ wcel 1433 Vcvv 2601 {cpr 3399 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-pr 3964 ax-bdor 10607 ax-bdeq 10611 ax-bdsep 10675 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 |
This theorem is referenced by: bj-prexg 10702 |
Copyright terms: Public domain | W3C validator |