ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brab1 GIF version

Theorem brab1 3830
Description: Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011.)
Assertion
Ref Expression
brab1 (𝑥𝑅𝐴𝑥 ∈ {𝑧𝑧𝑅𝐴})
Distinct variable groups:   𝑧,𝐴   𝑧,𝑅
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥)

Proof of Theorem brab1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 2604 . . 3 𝑥 ∈ V
2 breq1 3788 . . . 4 (𝑧 = 𝑦 → (𝑧𝑅𝐴𝑦𝑅𝐴))
3 breq1 3788 . . . 4 (𝑦 = 𝑥 → (𝑦𝑅𝐴𝑥𝑅𝐴))
42, 3sbcie2g 2847 . . 3 (𝑥 ∈ V → ([𝑥 / 𝑧]𝑧𝑅𝐴𝑥𝑅𝐴))
51, 4ax-mp 7 . 2 ([𝑥 / 𝑧]𝑧𝑅𝐴𝑥𝑅𝐴)
6 df-sbc 2816 . 2 ([𝑥 / 𝑧]𝑧𝑅𝐴𝑥 ∈ {𝑧𝑧𝑅𝐴})
75, 6bitr3i 184 1 (𝑥𝑅𝐴𝑥 ∈ {𝑧𝑧𝑅𝐴})
Colors of variables: wff set class
Syntax hints:  wb 103  wcel 1433  {cab 2067  Vcvv 2601  [wsbc 2815   class class class wbr 3785
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-sbc 2816  df-un 2977  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator