ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqd GIF version

Theorem breqd 3796
Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.)
Hypothesis
Ref Expression
breq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
breqd (𝜑 → (𝐶𝐴𝐷𝐶𝐵𝐷))

Proof of Theorem breqd
StepHypRef Expression
1 breq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 breq 3787 . 2 (𝐴 = 𝐵 → (𝐶𝐴𝐷𝐶𝐵𝐷))
31, 2syl 14 1 (𝜑 → (𝐶𝐴𝐷𝐶𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1284   class class class wbr 3785
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-17 1459  ax-ial 1467  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-cleq 2074  df-clel 2077  df-br 3786
This theorem is referenced by:  breq123d  3799  sbcbr12g  3835  sprmpt2  5880  supeq123d  6404  shftfibg  9708  shftfib  9711  2shfti  9719
  Copyright terms: Public domain W3C validator