![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breq123d | GIF version |
Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
Ref | Expression |
---|---|
breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
breq123d.2 | ⊢ (𝜑 → 𝑅 = 𝑆) |
breq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
breq123d | ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑆𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | breq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | 1, 2 | breq12d 3798 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
4 | breq123d.2 | . . 3 ⊢ (𝜑 → 𝑅 = 𝑆) | |
5 | 4 | breqd 3796 | . 2 ⊢ (𝜑 → (𝐵𝑅𝐷 ↔ 𝐵𝑆𝐷)) |
6 | 3, 5 | bitrd 186 | 1 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑆𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 = wceq 1284 class class class wbr 3785 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 |
This theorem is referenced by: sbcbrg 3834 fmptco 5351 |
Copyright terms: Public domain | W3C validator |