ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sprmpt2 GIF version

Theorem sprmpt2 5880
Description: The extension of a binary relation which is the value of an operation given in maps-to notation. (Contributed by Alexander van der Vekens, 30-Oct-2017.)
Hypotheses
Ref Expression
sprmpt2.1 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑣𝑊𝑒)𝑝𝜒)})
sprmpt2.2 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜒𝜓))
sprmpt2.3 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑓(𝑉𝑊𝐸)𝑝𝜃))
sprmpt2.4 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {⟨𝑓, 𝑝⟩ ∣ 𝜃} ∈ V)
Assertion
Ref Expression
sprmpt2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉𝑀𝐸) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉𝑊𝐸)𝑝𝜓)})
Distinct variable groups:   𝑒,𝐸,𝑓,𝑝,𝑣   𝑒,𝑉,𝑓,𝑝,𝑣   𝑒,𝑊,𝑣   𝜓,𝑒,𝑣
Allowed substitution hints:   𝜓(𝑓,𝑝)   𝜒(𝑣,𝑒,𝑓,𝑝)   𝜃(𝑣,𝑒,𝑓,𝑝)   𝑀(𝑣,𝑒,𝑓,𝑝)   𝑊(𝑓,𝑝)

Proof of Theorem sprmpt2
StepHypRef Expression
1 sprmpt2.1 . . 3 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑣𝑊𝑒)𝑝𝜒)})
21a1i 9 . 2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑣𝑊𝑒)𝑝𝜒)}))
3 oveq12 5541 . . . . . 6 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑣𝑊𝑒) = (𝑉𝑊𝐸))
43adantl 271 . . . . 5 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉𝑒 = 𝐸)) → (𝑣𝑊𝑒) = (𝑉𝑊𝐸))
54breqd 3796 . . . 4 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉𝑒 = 𝐸)) → (𝑓(𝑣𝑊𝑒)𝑝𝑓(𝑉𝑊𝐸)𝑝))
6 sprmpt2.2 . . . . 5 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜒𝜓))
76adantl 271 . . . 4 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉𝑒 = 𝐸)) → (𝜒𝜓))
85, 7anbi12d 456 . . 3 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉𝑒 = 𝐸)) → ((𝑓(𝑣𝑊𝑒)𝑝𝜒) ↔ (𝑓(𝑉𝑊𝐸)𝑝𝜓)))
98opabbidv 3844 . 2 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉𝑒 = 𝐸)) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑣𝑊𝑒)𝑝𝜒)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉𝑊𝐸)𝑝𝜓)})
10 simpl 107 . 2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → 𝑉 ∈ V)
11 simpr 108 . 2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → 𝐸 ∈ V)
12 sprmpt2.3 . . 3 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑓(𝑉𝑊𝐸)𝑝𝜃))
13 sprmpt2.4 . . 3 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {⟨𝑓, 𝑝⟩ ∣ 𝜃} ∈ V)
1412, 13opabbrex 5569 . 2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉𝑊𝐸)𝑝𝜓)} ∈ V)
152, 9, 10, 11, 14ovmpt2d 5648 1 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉𝑀𝐸) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉𝑊𝐸)𝑝𝜓)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  Vcvv 2601   class class class wbr 3785  {copab 3838  (class class class)co 5532  cmpt2 5534
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator