| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breqi | GIF version | ||
| Description: Equality inference for binary relations. (Contributed by NM, 19-Feb-2005.) |
| Ref | Expression |
|---|---|
| breqi.1 | ⊢ 𝑅 = 𝑆 |
| Ref | Expression |
|---|---|
| breqi | ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqi.1 | . 2 ⊢ 𝑅 = 𝑆 | |
| 2 | breq 3787 | . 2 ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) | |
| 3 | 1, 2 | ax-mp 7 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 103 = wceq 1284 class class class wbr 3785 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-cleq 2074 df-clel 2077 df-br 3786 |
| This theorem is referenced by: f1ompt 5341 brtpos2 5889 tfrexlem 5971 brdifun 6156 ltpiord 6509 ltxrlt 7178 ltxr 8849 |
| Copyright terms: Public domain | W3C validator |