ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ompt GIF version

Theorem f1ompt 5341
Description: Express bijection for a mapping operation. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by Mario Carneiro, 4-Dec-2016.)
Hypothesis
Ref Expression
fmpt.1 𝐹 = (𝑥𝐴𝐶)
Assertion
Ref Expression
f1ompt (𝐹:𝐴1-1-onto𝐵 ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑦,𝐹
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem f1ompt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ffn 5066 . . . . 5 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 dff1o4 5154 . . . . . 6 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
32baib 861 . . . . 5 (𝐹 Fn 𝐴 → (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐵))
41, 3syl 14 . . . 4 (𝐹:𝐴𝐵 → (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐵))
5 fnres 5035 . . . . . 6 ((𝐹𝐵) Fn 𝐵 ↔ ∀𝑦𝐵 ∃!𝑧 𝑦𝐹𝑧)
6 nfcv 2219 . . . . . . . . . 10 𝑥𝑧
7 fmpt.1 . . . . . . . . . . 11 𝐹 = (𝑥𝐴𝐶)
8 nfmpt1 3871 . . . . . . . . . . 11 𝑥(𝑥𝐴𝐶)
97, 8nfcxfr 2216 . . . . . . . . . 10 𝑥𝐹
10 nfcv 2219 . . . . . . . . . 10 𝑥𝑦
116, 9, 10nfbr 3829 . . . . . . . . 9 𝑥 𝑧𝐹𝑦
12 nfv 1461 . . . . . . . . 9 𝑧(𝑥𝐴𝑦 = 𝐶)
13 breq1 3788 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧𝐹𝑦𝑥𝐹𝑦))
14 df-mpt 3841 . . . . . . . . . . . . 13 (𝑥𝐴𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
157, 14eqtri 2101 . . . . . . . . . . . 12 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
1615breqi 3791 . . . . . . . . . . 11 (𝑥𝐹𝑦𝑥{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}𝑦)
17 df-br 3786 . . . . . . . . . . . 12 (𝑥{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)})
18 opabid 4012 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} ↔ (𝑥𝐴𝑦 = 𝐶))
1917, 18bitri 182 . . . . . . . . . . 11 (𝑥{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}𝑦 ↔ (𝑥𝐴𝑦 = 𝐶))
2016, 19bitri 182 . . . . . . . . . 10 (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = 𝐶))
2113, 20syl6bb 194 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧𝐹𝑦 ↔ (𝑥𝐴𝑦 = 𝐶)))
2211, 12, 21cbveu 1965 . . . . . . . 8 (∃!𝑧 𝑧𝐹𝑦 ↔ ∃!𝑥(𝑥𝐴𝑦 = 𝐶))
23 vex 2604 . . . . . . . . . 10 𝑦 ∈ V
24 vex 2604 . . . . . . . . . 10 𝑧 ∈ V
2523, 24brcnv 4536 . . . . . . . . 9 (𝑦𝐹𝑧𝑧𝐹𝑦)
2625eubii 1950 . . . . . . . 8 (∃!𝑧 𝑦𝐹𝑧 ↔ ∃!𝑧 𝑧𝐹𝑦)
27 df-reu 2355 . . . . . . . 8 (∃!𝑥𝐴 𝑦 = 𝐶 ↔ ∃!𝑥(𝑥𝐴𝑦 = 𝐶))
2822, 26, 273bitr4i 210 . . . . . . 7 (∃!𝑧 𝑦𝐹𝑧 ↔ ∃!𝑥𝐴 𝑦 = 𝐶)
2928ralbii 2372 . . . . . 6 (∀𝑦𝐵 ∃!𝑧 𝑦𝐹𝑧 ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶)
305, 29bitri 182 . . . . 5 ((𝐹𝐵) Fn 𝐵 ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶)
31 relcnv 4723 . . . . . . 7 Rel 𝐹
32 df-rn 4374 . . . . . . . 8 ran 𝐹 = dom 𝐹
33 frn 5072 . . . . . . . 8 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
3432, 33syl5eqssr 3044 . . . . . . 7 (𝐹:𝐴𝐵 → dom 𝐹𝐵)
35 relssres 4666 . . . . . . 7 ((Rel 𝐹 ∧ dom 𝐹𝐵) → (𝐹𝐵) = 𝐹)
3631, 34, 35sylancr 405 . . . . . 6 (𝐹:𝐴𝐵 → (𝐹𝐵) = 𝐹)
3736fneq1d 5009 . . . . 5 (𝐹:𝐴𝐵 → ((𝐹𝐵) Fn 𝐵𝐹 Fn 𝐵))
3830, 37syl5bbr 192 . . . 4 (𝐹:𝐴𝐵 → (∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶𝐹 Fn 𝐵))
394, 38bitr4d 189 . . 3 (𝐹:𝐴𝐵 → (𝐹:𝐴1-1-onto𝐵 ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶))
4039pm5.32i 441 . 2 ((𝐹:𝐴𝐵𝐹:𝐴1-1-onto𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶))
41 f1of 5146 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
4241pm4.71ri 384 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴𝐵𝐹:𝐴1-1-onto𝐵))
437fmpt 5340 . . 3 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
4443anbi1i 445 . 2 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶))
4540, 42, 443bitr4i 210 1 (𝐹:𝐴1-1-onto𝐵 ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103   = wceq 1284  wcel 1433  ∃!weu 1941  wral 2348  ∃!wreu 2350  wss 2973  cop 3401   class class class wbr 3785  {copab 3838  cmpt 3839  ccnv 4362  dom cdm 4363  ran crn 4364  cres 4365  Rel wrel 4368   Fn wfn 4917  wf 4918  1-1-ontowf1o 4921
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930
This theorem is referenced by:  icoshftf1o  9013
  Copyright terms: Public domain W3C validator