ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrexlem GIF version

Theorem tfrexlem 5971
Description: The transfinite recursion function is set-like if the input is. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypotheses
Ref Expression
tfrexlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrexlem.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
Assertion
Ref Expression
tfrexlem ((𝜑𝐶𝑉) → (recs(𝐹)‘𝐶) ∈ V)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓)   𝐶(𝑥,𝑦,𝑓)   𝑉(𝑥,𝑦,𝑓)

Proof of Theorem tfrexlem
Dummy variables 𝑒 𝑔 𝑢 𝑣 𝑡 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5198 . . . . 5 (𝑧 = 𝐶 → (recs(𝐹)‘𝑧) = (recs(𝐹)‘𝐶))
21eleq1d 2147 . . . 4 (𝑧 = 𝐶 → ((recs(𝐹)‘𝑧) ∈ V ↔ (recs(𝐹)‘𝐶) ∈ V))
32imbi2d 228 . . 3 (𝑧 = 𝐶 → ((𝜑 → (recs(𝐹)‘𝑧) ∈ V) ↔ (𝜑 → (recs(𝐹)‘𝐶) ∈ V)))
4 inss2 3187 . . . . . . 7 (suc suc 𝑧 ∩ On) ⊆ On
5 ssorduni 4231 . . . . . . 7 ((suc suc 𝑧 ∩ On) ⊆ On → Ord (suc suc 𝑧 ∩ On))
64, 5ax-mp 7 . . . . . 6 Ord (suc suc 𝑧 ∩ On)
7 vex 2604 . . . . . . . . . 10 𝑧 ∈ V
87sucex 4243 . . . . . . . . 9 suc 𝑧 ∈ V
98sucex 4243 . . . . . . . 8 suc suc 𝑧 ∈ V
109inex1 3912 . . . . . . 7 (suc suc 𝑧 ∩ On) ∈ V
1110uniex 4192 . . . . . 6 (suc suc 𝑧 ∩ On) ∈ V
12 elon2 4131 . . . . . 6 ( (suc suc 𝑧 ∩ On) ∈ On ↔ (Ord (suc suc 𝑧 ∩ On) ∧ (suc suc 𝑧 ∩ On) ∈ V))
136, 11, 12mpbir2an 883 . . . . 5 (suc suc 𝑧 ∩ On) ∈ On
14 tfrexlem.1 . . . . . . 7 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
1514tfrlem3 5949 . . . . . 6 𝐴 = {𝑣 ∣ ∃𝑧 ∈ On (𝑣 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑣𝑢) = (𝐹‘(𝑣𝑢)))}
16 tfrexlem.2 . . . . . . 7 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
17 fveq2 5198 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
1817eleq1d 2147 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝐹𝑥) ∈ V ↔ (𝐹𝑧) ∈ V))
1918anbi2d 451 . . . . . . . 8 (𝑥 = 𝑧 → ((Fun 𝐹 ∧ (𝐹𝑥) ∈ V) ↔ (Fun 𝐹 ∧ (𝐹𝑧) ∈ V)))
2019cbvalv 1835 . . . . . . 7 (∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V) ↔ ∀𝑧(Fun 𝐹 ∧ (𝐹𝑧) ∈ V))
2116, 20sylib 120 . . . . . 6 (𝜑 → ∀𝑧(Fun 𝐹 ∧ (𝐹𝑧) ∈ V))
2215, 21tfrlemi1 5969 . . . . 5 ((𝜑 (suc suc 𝑧 ∩ On) ∈ On) → ∃𝑔(𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))))
2313, 22mpan2 415 . . . 4 (𝜑 → ∃𝑔(𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))))
2415recsfval 5954 . . . . . . . . . . 11 recs(𝐹) = 𝐴
2524breqi 3791 . . . . . . . . . 10 (𝑧recs(𝐹)𝑦𝑧 𝐴𝑦)
26 df-br 3786 . . . . . . . . . 10 (𝑧 𝐴𝑦 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝐴)
27 eluni 3604 . . . . . . . . . 10 (⟨𝑧, 𝑦⟩ ∈ 𝐴 ↔ ∃(⟨𝑧, 𝑦⟩ ∈ 𝐴))
2825, 26, 273bitri 204 . . . . . . . . 9 (𝑧recs(𝐹)𝑦 ↔ ∃(⟨𝑧, 𝑦⟩ ∈ 𝐴))
297sucid 4172 . . . . . . . . . . . . . . . . 17 𝑧 ∈ suc 𝑧
30 simpr 108 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((⟨𝑧, 𝑦⟩ ∈ 𝐴) → 𝐴)
31 vex 2604 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ∈ V
3214, 31tfrlem3a 5948 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 ↔ ∃𝑡 ∈ On ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))
3330, 32sylib 120 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⟨𝑧, 𝑦⟩ ∈ 𝐴) → ∃𝑡 ∈ On ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))
34 simprl 497 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((⟨𝑧, 𝑦⟩ ∈ 𝐴) ∧ (𝑡 ∈ On ∧ ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))) → 𝑡 ∈ On)
35 simprrl 505 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((⟨𝑧, 𝑦⟩ ∈ 𝐴) ∧ (𝑡 ∈ On ∧ ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))) → Fn 𝑡)
36 simpll 495 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((⟨𝑧, 𝑦⟩ ∈ 𝐴) ∧ (𝑡 ∈ On ∧ ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))) → ⟨𝑧, 𝑦⟩ ∈ )
37 fnop 5022 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (( Fn 𝑡 ∧ ⟨𝑧, 𝑦⟩ ∈ ) → 𝑧𝑡)
3835, 36, 37syl2anc 403 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((⟨𝑧, 𝑦⟩ ∈ 𝐴) ∧ (𝑡 ∈ On ∧ ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))) → 𝑧𝑡)
39 onelon 4139 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ On ∧ 𝑧𝑡) → 𝑧 ∈ On)
4034, 38, 39syl2anc 403 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((⟨𝑧, 𝑦⟩ ∈ 𝐴) ∧ (𝑡 ∈ On ∧ ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))) → 𝑧 ∈ On)
4133, 40rexlimddv 2481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((⟨𝑧, 𝑦⟩ ∈ 𝐴) → 𝑧 ∈ On)
4241adantl 271 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → 𝑧 ∈ On)
43 suceloni 4245 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ On → suc 𝑧 ∈ On)
4442, 43syl 14 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → suc 𝑧 ∈ On)
45 suceloni 4245 . . . . . . . . . . . . . . . . . . . . . 22 (suc 𝑧 ∈ On → suc suc 𝑧 ∈ On)
4644, 45syl 14 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → suc suc 𝑧 ∈ On)
47 onss 4237 . . . . . . . . . . . . . . . . . . . . 21 (suc suc 𝑧 ∈ On → suc suc 𝑧 ⊆ On)
4846, 47syl 14 . . . . . . . . . . . . . . . . . . . 20 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → suc suc 𝑧 ⊆ On)
49 df-ss 2986 . . . . . . . . . . . . . . . . . . . 20 (suc suc 𝑧 ⊆ On ↔ (suc suc 𝑧 ∩ On) = suc suc 𝑧)
5048, 49sylib 120 . . . . . . . . . . . . . . . . . . 19 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → (suc suc 𝑧 ∩ On) = suc suc 𝑧)
5150unieqd 3612 . . . . . . . . . . . . . . . . . 18 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → (suc suc 𝑧 ∩ On) = suc suc 𝑧)
52 eloni 4130 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑧 ∈ On → Ord suc 𝑧)
53 ordtr 4133 . . . . . . . . . . . . . . . . . . . 20 (Ord suc 𝑧 → Tr suc 𝑧)
5444, 52, 533syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → Tr suc 𝑧)
558unisuc 4168 . . . . . . . . . . . . . . . . . . 19 (Tr suc 𝑧 suc suc 𝑧 = suc 𝑧)
5654, 55sylib 120 . . . . . . . . . . . . . . . . . 18 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → suc suc 𝑧 = suc 𝑧)
5751, 56eqtrd 2113 . . . . . . . . . . . . . . . . 17 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → (suc suc 𝑧 ∩ On) = suc 𝑧)
5829, 57syl5eleqr 2168 . . . . . . . . . . . . . . . 16 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → 𝑧 (suc suc 𝑧 ∩ On))
59 fndm 5018 . . . . . . . . . . . . . . . . 17 (𝑔 Fn (suc suc 𝑧 ∩ On) → dom 𝑔 = (suc suc 𝑧 ∩ On))
6059ad2antrr 471 . . . . . . . . . . . . . . . 16 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → dom 𝑔 = (suc suc 𝑧 ∩ On))
6158, 60eleqtrrd 2158 . . . . . . . . . . . . . . 15 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → 𝑧 ∈ dom 𝑔)
627eldm 4550 . . . . . . . . . . . . . . 15 (𝑧 ∈ dom 𝑔 ↔ ∃𝑥 𝑧𝑔𝑥)
6361, 62sylib 120 . . . . . . . . . . . . . 14 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → ∃𝑥 𝑧𝑔𝑥)
64 simpr 108 . . . . . . . . . . . . . . 15 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝑧𝑔𝑥)
65 fneq2 5008 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (suc suc 𝑧 ∩ On) → (𝑔 Fn 𝑣𝑔 Fn (suc suc 𝑧 ∩ On)))
66 raleq 2549 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (suc suc 𝑧 ∩ On) → (∀𝑤𝑣 (𝑔𝑤) = (𝐹‘(𝑔𝑤)) ↔ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))))
6765, 66anbi12d 456 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = (suc suc 𝑧 ∩ On) → ((𝑔 Fn 𝑣 ∧ ∀𝑤𝑣 (𝑔𝑤) = (𝐹‘(𝑔𝑤))) ↔ (𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤)))))
6867rspcev 2701 . . . . . . . . . . . . . . . . . . 19 (( (suc suc 𝑧 ∩ On) ∈ On ∧ (𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤)))) → ∃𝑣 ∈ On (𝑔 Fn 𝑣 ∧ ∀𝑤𝑣 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
6913, 68mpan 414 . . . . . . . . . . . . . . . . . 18 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → ∃𝑣 ∈ On (𝑔 Fn 𝑣 ∧ ∀𝑤𝑣 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
70 vex 2604 . . . . . . . . . . . . . . . . . . 19 𝑔 ∈ V
7114, 70tfrlem3a 5948 . . . . . . . . . . . . . . . . . 18 (𝑔𝐴 ↔ ∃𝑣 ∈ On (𝑔 Fn 𝑣 ∧ ∀𝑤𝑣 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
7269, 71sylibr 132 . . . . . . . . . . . . . . . . 17 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → 𝑔𝐴)
7372ad2antrr 471 . . . . . . . . . . . . . . . 16 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝑔𝐴)
74 simplrr 502 . . . . . . . . . . . . . . . 16 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝐴)
75 simplrl 501 . . . . . . . . . . . . . . . . 17 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → ⟨𝑧, 𝑦⟩ ∈ )
76 df-br 3786 . . . . . . . . . . . . . . . . 17 (𝑧𝑦 ↔ ⟨𝑧, 𝑦⟩ ∈ )
7775, 76sylibr 132 . . . . . . . . . . . . . . . 16 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝑧𝑦)
7815tfrlem5 5953 . . . . . . . . . . . . . . . . 17 ((𝑔𝐴𝐴) → ((𝑧𝑔𝑥𝑧𝑦) → 𝑥 = 𝑦))
7978imp 122 . . . . . . . . . . . . . . . 16 (((𝑔𝐴𝐴) ∧ (𝑧𝑔𝑥𝑧𝑦)) → 𝑥 = 𝑦)
8073, 74, 64, 77, 79syl22anc 1170 . . . . . . . . . . . . . . 15 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝑥 = 𝑦)
8164, 80breqtrd 3809 . . . . . . . . . . . . . 14 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝑧𝑔𝑦)
8263, 81exlimddv 1819 . . . . . . . . . . . . 13 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → 𝑧𝑔𝑦)
83 vex 2604 . . . . . . . . . . . . . 14 𝑦 ∈ V
847, 83brelrn 4585 . . . . . . . . . . . . 13 (𝑧𝑔𝑦𝑦 ∈ ran 𝑔)
8582, 84syl 14 . . . . . . . . . . . 12 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → 𝑦 ∈ ran 𝑔)
86 elssuni 3629 . . . . . . . . . . . 12 (𝑦 ∈ ran 𝑔𝑦 ran 𝑔)
8785, 86syl 14 . . . . . . . . . . 11 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → 𝑦 ran 𝑔)
8887ex 113 . . . . . . . . . 10 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → ((⟨𝑧, 𝑦⟩ ∈ 𝐴) → 𝑦 ran 𝑔))
8988exlimdv 1740 . . . . . . . . 9 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → (∃(⟨𝑧, 𝑦⟩ ∈ 𝐴) → 𝑦 ran 𝑔))
9028, 89syl5bi 150 . . . . . . . 8 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → (𝑧recs(𝐹)𝑦𝑦 ran 𝑔))
9190alrimiv 1795 . . . . . . 7 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → ∀𝑦(𝑧recs(𝐹)𝑦𝑦 ran 𝑔))
92 fvss 5209 . . . . . . 7 (∀𝑦(𝑧recs(𝐹)𝑦𝑦 ran 𝑔) → (recs(𝐹)‘𝑧) ⊆ ran 𝑔)
9391, 92syl 14 . . . . . 6 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → (recs(𝐹)‘𝑧) ⊆ ran 𝑔)
9470rnex 4617 . . . . . . . 8 ran 𝑔 ∈ V
9594uniex 4192 . . . . . . 7 ran 𝑔 ∈ V
9695ssex 3915 . . . . . 6 ((recs(𝐹)‘𝑧) ⊆ ran 𝑔 → (recs(𝐹)‘𝑧) ∈ V)
9793, 96syl 14 . . . . 5 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → (recs(𝐹)‘𝑧) ∈ V)
9897exlimiv 1529 . . . 4 (∃𝑔(𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → (recs(𝐹)‘𝑧) ∈ V)
9923, 98syl 14 . . 3 (𝜑 → (recs(𝐹)‘𝑧) ∈ V)
1003, 99vtoclg 2658 . 2 (𝐶𝑉 → (𝜑 → (recs(𝐹)‘𝐶) ∈ V))
101100impcom 123 1 ((𝜑𝐶𝑉) → (recs(𝐹)‘𝐶) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wal 1282   = wceq 1284  wex 1421  wcel 1433  {cab 2067  wral 2348  wrex 2349  Vcvv 2601  cin 2972  wss 2973  cop 3401   cuni 3601   class class class wbr 3785  Tr wtr 3875  Ord word 4117  Oncon0 4118  suc csuc 4120  dom cdm 4363  ran crn 4364  cres 4365  Fun wfun 4916   Fn wfn 4917  cfv 4922  recscrecs 5942
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-recs 5943
This theorem is referenced by:  tfrex  5977
  Copyright terms: Public domain W3C validator