![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvoprab12 | GIF version |
Description: Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
cbvoprab12.1 | ⊢ Ⅎ𝑤𝜑 |
cbvoprab12.2 | ⊢ Ⅎ𝑣𝜑 |
cbvoprab12.3 | ⊢ Ⅎ𝑥𝜓 |
cbvoprab12.4 | ⊢ Ⅎ𝑦𝜓 |
cbvoprab12.5 | ⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑣) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvoprab12 | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑤, 𝑣〉, 𝑧〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1461 | . . . . 5 ⊢ Ⅎ𝑤 𝑢 = 〈𝑥, 𝑦〉 | |
2 | cbvoprab12.1 | . . . . 5 ⊢ Ⅎ𝑤𝜑 | |
3 | 1, 2 | nfan 1497 | . . . 4 ⊢ Ⅎ𝑤(𝑢 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
4 | nfv 1461 | . . . . 5 ⊢ Ⅎ𝑣 𝑢 = 〈𝑥, 𝑦〉 | |
5 | cbvoprab12.2 | . . . . 5 ⊢ Ⅎ𝑣𝜑 | |
6 | 4, 5 | nfan 1497 | . . . 4 ⊢ Ⅎ𝑣(𝑢 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
7 | nfv 1461 | . . . . 5 ⊢ Ⅎ𝑥 𝑢 = 〈𝑤, 𝑣〉 | |
8 | cbvoprab12.3 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
9 | 7, 8 | nfan 1497 | . . . 4 ⊢ Ⅎ𝑥(𝑢 = 〈𝑤, 𝑣〉 ∧ 𝜓) |
10 | nfv 1461 | . . . . 5 ⊢ Ⅎ𝑦 𝑢 = 〈𝑤, 𝑣〉 | |
11 | cbvoprab12.4 | . . . . 5 ⊢ Ⅎ𝑦𝜓 | |
12 | 10, 11 | nfan 1497 | . . . 4 ⊢ Ⅎ𝑦(𝑢 = 〈𝑤, 𝑣〉 ∧ 𝜓) |
13 | opeq12 3572 | . . . . . 6 ⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑣) → 〈𝑥, 𝑦〉 = 〈𝑤, 𝑣〉) | |
14 | 13 | eqeq2d 2092 | . . . . 5 ⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑣) → (𝑢 = 〈𝑥, 𝑦〉 ↔ 𝑢 = 〈𝑤, 𝑣〉)) |
15 | cbvoprab12.5 | . . . . 5 ⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑣) → (𝜑 ↔ 𝜓)) | |
16 | 14, 15 | anbi12d 456 | . . . 4 ⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑣) → ((𝑢 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑢 = 〈𝑤, 𝑣〉 ∧ 𝜓))) |
17 | 3, 6, 9, 12, 16 | cbvex2 1838 | . . 3 ⊢ (∃𝑥∃𝑦(𝑢 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑤∃𝑣(𝑢 = 〈𝑤, 𝑣〉 ∧ 𝜓)) |
18 | 17 | opabbii 3845 | . 2 ⊢ {〈𝑢, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑢 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {〈𝑢, 𝑧〉 ∣ ∃𝑤∃𝑣(𝑢 = 〈𝑤, 𝑣〉 ∧ 𝜓)} |
19 | dfoprab2 5572 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑢, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑢 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
20 | dfoprab2 5572 | . 2 ⊢ {〈〈𝑤, 𝑣〉, 𝑧〉 ∣ 𝜓} = {〈𝑢, 𝑧〉 ∣ ∃𝑤∃𝑣(𝑢 = 〈𝑤, 𝑣〉 ∧ 𝜓)} | |
21 | 18, 19, 20 | 3eqtr4i 2111 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑤, 𝑣〉, 𝑧〉 ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 Ⅎwnf 1389 ∃wex 1421 〈cop 3401 {copab 3838 {coprab 5533 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-opab 3840 df-oprab 5536 |
This theorem is referenced by: cbvoprab12v 5599 cbvmpt2x 5602 dfoprab4f 5839 fmpt2x 5846 tposoprab 5918 |
Copyright terms: Public domain | W3C validator |