![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opeq12 | GIF version |
Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opeq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 3570 | . 2 ⊢ (𝐴 = 𝐶 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐵〉) | |
2 | opeq2 3571 | . 2 ⊢ (𝐵 = 𝐷 → 〈𝐶, 𝐵〉 = 〈𝐶, 𝐷〉) | |
3 | 1, 2 | sylan9eq 2133 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 〈cop 3401 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-op 3407 |
This theorem is referenced by: opeq12i 3575 opeq12d 3578 cbvopab 3849 opth 3992 copsex2t 4000 copsex2g 4001 relop 4504 funopg 4954 fsn 5356 fnressn 5370 cbvoprab12 5598 eqopi 5818 f1o2ndf1 5869 tposoprab 5918 brecop 6219 th3q 6234 ecovcom 6236 ecovicom 6237 ecovass 6238 ecoviass 6239 ecovdi 6240 ecovidi 6241 1qec 6578 enq0sym 6622 addnq0mo 6637 mulnq0mo 6638 addnnnq0 6639 mulnnnq0 6640 distrnq0 6649 mulcomnq0 6650 addassnq0 6652 addsrmo 6920 mulsrmo 6921 addsrpr 6922 mulsrpr 6923 axcnre 7047 eucalgval2 10435 |
Copyright terms: Public domain | W3C validator |