| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ceqsalg | GIF version | ||
| Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| ceqsalg.1 | ⊢ Ⅎ𝑥𝜓 |
| ceqsalg.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ceqsalg | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2613 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 2 | nfa1 1474 | . . . 4 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝐴 → 𝜑) | |
| 3 | ceqsalg.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | ceqsalg.2 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 4 | biimpd 142 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) |
| 6 | 5 | a2i 11 | . . . . 5 ⊢ ((𝑥 = 𝐴 → 𝜑) → (𝑥 = 𝐴 → 𝜓)) |
| 7 | 6 | sps 1470 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) → (𝑥 = 𝐴 → 𝜓)) |
| 8 | 2, 3, 7 | exlimd 1528 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) → (∃𝑥 𝑥 = 𝐴 → 𝜓)) |
| 9 | 1, 8 | syl5com 29 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) → 𝜓)) |
| 10 | 4 | biimprcd 158 | . . 3 ⊢ (𝜓 → (𝑥 = 𝐴 → 𝜑)) |
| 11 | 3, 10 | alrimi 1455 | . 2 ⊢ (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑)) |
| 12 | 9, 11 | impbid1 140 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 ∀wal 1282 = wceq 1284 Ⅎwnf 1389 ∃wex 1421 ∈ wcel 1433 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-v 2603 |
| This theorem is referenced by: ceqsal 2628 sbc6g 2839 uniiunlem 3082 sucprcreg 4292 funimass4 5245 ralrnmpt2 5635 |
| Copyright terms: Public domain | W3C validator |