| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ceqsalg | Unicode version | ||
| Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| ceqsalg.1 |
|
| ceqsalg.2 |
|
| Ref | Expression |
|---|---|
| ceqsalg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2613 |
. . 3
| |
| 2 | nfa1 1474 |
. . . 4
| |
| 3 | ceqsalg.1 |
. . . 4
| |
| 4 | ceqsalg.2 |
. . . . . . 7
| |
| 5 | 4 | biimpd 142 |
. . . . . 6
|
| 6 | 5 | a2i 11 |
. . . . 5
|
| 7 | 6 | sps 1470 |
. . . 4
|
| 8 | 2, 3, 7 | exlimd 1528 |
. . 3
|
| 9 | 1, 8 | syl5com 29 |
. 2
|
| 10 | 4 | biimprcd 158 |
. . 3
|
| 11 | 3, 10 | alrimi 1455 |
. 2
|
| 12 | 9, 11 | impbid1 140 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-v 2603 |
| This theorem is referenced by: ceqsal 2628 sbc6g 2839 uniiunlem 3082 sucprcreg 4292 funimass4 5245 ralrnmpt2 5635 |
| Copyright terms: Public domain | W3C validator |