ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsralt GIF version

Theorem ceqsralt 2626
Description: Restricted quantifier version of ceqsalt 2625. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
Assertion
Ref Expression
ceqsralt ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem ceqsralt
StepHypRef Expression
1 df-ral 2353 . . . 4 (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ ∀𝑥(𝑥𝐵 → (𝑥 = 𝐴𝜑)))
2 eleq1 2141 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
32pm5.32ri 442 . . . . . . . 8 ((𝑥𝐵𝑥 = 𝐴) ↔ (𝐴𝐵𝑥 = 𝐴))
43imbi1i 236 . . . . . . 7 (((𝑥𝐵𝑥 = 𝐴) → 𝜑) ↔ ((𝐴𝐵𝑥 = 𝐴) → 𝜑))
5 impexp 259 . . . . . . 7 (((𝑥𝐵𝑥 = 𝐴) → 𝜑) ↔ (𝑥𝐵 → (𝑥 = 𝐴𝜑)))
6 impexp 259 . . . . . . 7 (((𝐴𝐵𝑥 = 𝐴) → 𝜑) ↔ (𝐴𝐵 → (𝑥 = 𝐴𝜑)))
74, 5, 63bitr3i 208 . . . . . 6 ((𝑥𝐵 → (𝑥 = 𝐴𝜑)) ↔ (𝐴𝐵 → (𝑥 = 𝐴𝜑)))
87albii 1399 . . . . 5 (∀𝑥(𝑥𝐵 → (𝑥 = 𝐴𝜑)) ↔ ∀𝑥(𝐴𝐵 → (𝑥 = 𝐴𝜑)))
98a1i 9 . . . 4 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (∀𝑥(𝑥𝐵 → (𝑥 = 𝐴𝜑)) ↔ ∀𝑥(𝐴𝐵 → (𝑥 = 𝐴𝜑))))
101, 9syl5bb 190 . . 3 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ ∀𝑥(𝐴𝐵 → (𝑥 = 𝐴𝜑))))
11 19.21v 1794 . . 3 (∀𝑥(𝐴𝐵 → (𝑥 = 𝐴𝜑)) ↔ (𝐴𝐵 → ∀𝑥(𝑥 = 𝐴𝜑)))
1210, 11syl6bb 194 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ (𝐴𝐵 → ∀𝑥(𝑥 = 𝐴𝜑))))
13 biimt 239 . . 3 (𝐴𝐵 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ (𝐴𝐵 → ∀𝑥(𝑥 = 𝐴𝜑))))
14133ad2ant3 961 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ (𝐴𝐵 → ∀𝑥(𝑥 = 𝐴𝜑))))
15 ceqsalt 2625 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
1612, 14, 153bitr2d 214 1 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919  wal 1282   = wceq 1284  wnf 1389  wcel 1433  wral 2348
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-ral 2353  df-v 2603
This theorem is referenced by:  ceqsralv  2630
  Copyright terms: Public domain W3C validator