| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tz6.12f | GIF version | ||
| Description: Function value, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 30-Aug-1999.) |
| Ref | Expression |
|---|---|
| tz6.12f.1 | ⊢ Ⅎ𝑦𝐹 |
| Ref | Expression |
|---|---|
| tz6.12f | ⊢ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq2 3571 | . . . . 5 ⊢ (𝑧 = 𝑦 → 〈𝐴, 𝑧〉 = 〈𝐴, 𝑦〉) | |
| 2 | 1 | eleq1d 2147 | . . . 4 ⊢ (𝑧 = 𝑦 → (〈𝐴, 𝑧〉 ∈ 𝐹 ↔ 〈𝐴, 𝑦〉 ∈ 𝐹)) |
| 3 | tz6.12f.1 | . . . . . . 7 ⊢ Ⅎ𝑦𝐹 | |
| 4 | 3 | nfel2 2231 | . . . . . 6 ⊢ Ⅎ𝑦〈𝐴, 𝑧〉 ∈ 𝐹 |
| 5 | nfv 1461 | . . . . . 6 ⊢ Ⅎ𝑧〈𝐴, 𝑦〉 ∈ 𝐹 | |
| 6 | 4, 5, 2 | cbveu 1965 | . . . . 5 ⊢ (∃!𝑧〈𝐴, 𝑧〉 ∈ 𝐹 ↔ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) |
| 7 | 6 | a1i 9 | . . . 4 ⊢ (𝑧 = 𝑦 → (∃!𝑧〈𝐴, 𝑧〉 ∈ 𝐹 ↔ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹)) |
| 8 | 2, 7 | anbi12d 456 | . . 3 ⊢ (𝑧 = 𝑦 → ((〈𝐴, 𝑧〉 ∈ 𝐹 ∧ ∃!𝑧〈𝐴, 𝑧〉 ∈ 𝐹) ↔ (〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹))) |
| 9 | eqeq2 2090 | . . 3 ⊢ (𝑧 = 𝑦 → ((𝐹‘𝐴) = 𝑧 ↔ (𝐹‘𝐴) = 𝑦)) | |
| 10 | 8, 9 | imbi12d 232 | . 2 ⊢ (𝑧 = 𝑦 → (((〈𝐴, 𝑧〉 ∈ 𝐹 ∧ ∃!𝑧〈𝐴, 𝑧〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑧) ↔ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑦))) |
| 11 | tz6.12 5222 | . 2 ⊢ ((〈𝐴, 𝑧〉 ∈ 𝐹 ∧ ∃!𝑧〈𝐴, 𝑧〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑧) | |
| 12 | 10, 11 | chvarv 1853 | 1 ⊢ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑦) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∈ wcel 1433 ∃!weu 1941 Ⅎwnfc 2206 〈cop 3401 ‘cfv 4922 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-iota 4887 df-fv 4930 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |