| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbhypf | Unicode version | ||
| Description: Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf 2648 for class substitution version. (Contributed by NM, 19-Dec-2008.) |
| Ref | Expression |
|---|---|
| csbhypf.1 |
|
| csbhypf.2 |
|
| csbhypf.3 |
|
| Ref | Expression |
|---|---|
| csbhypf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbhypf.1 |
. . . 4
| |
| 2 | 1 | nfeq2 2230 |
. . 3
|
| 3 | nfcsb1v 2938 |
. . . 4
| |
| 4 | csbhypf.2 |
. . . 4
| |
| 5 | 3, 4 | nfeq 2226 |
. . 3
|
| 6 | 2, 5 | nfim 1504 |
. 2
|
| 7 | eqeq1 2087 |
. . 3
| |
| 8 | csbeq1a 2916 |
. . . 4
| |
| 9 | 8 | eqeq1d 2089 |
. . 3
|
| 10 | 7, 9 | imbi12d 232 |
. 2
|
| 11 | csbhypf.3 |
. 2
| |
| 12 | 6, 10, 11 | chvar 1680 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-sbc 2816 df-csb 2909 |
| This theorem is referenced by: tfisi 4328 |
| Copyright terms: Public domain | W3C validator |