ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbiebt GIF version

Theorem csbiebt 2942
Description: Conversion of implicit substitution to explicit substitution into a class. (Closed theorem version of csbiegf 2946.) (Contributed by NM, 11-Nov-2005.)
Assertion
Ref Expression
csbiebt ((𝐴𝑉𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem csbiebt
StepHypRef Expression
1 elex 2610 . 2 (𝐴𝑉𝐴 ∈ V)
2 spsbc 2826 . . . . 5 (𝐴 ∈ V → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → [𝐴 / 𝑥](𝑥 = 𝐴𝐵 = 𝐶)))
32adantr 270 . . . 4 ((𝐴 ∈ V ∧ 𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → [𝐴 / 𝑥](𝑥 = 𝐴𝐵 = 𝐶)))
4 simpl 107 . . . . 5 ((𝐴 ∈ V ∧ 𝑥𝐶) → 𝐴 ∈ V)
5 biimt 239 . . . . . . 7 (𝑥 = 𝐴 → (𝐵 = 𝐶 ↔ (𝑥 = 𝐴𝐵 = 𝐶)))
6 csbeq1a 2916 . . . . . . . 8 (𝑥 = 𝐴𝐵 = 𝐴 / 𝑥𝐵)
76eqeq1d 2089 . . . . . . 7 (𝑥 = 𝐴 → (𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐶))
85, 7bitr3d 188 . . . . . 6 (𝑥 = 𝐴 → ((𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
98adantl 271 . . . . 5 (((𝐴 ∈ V ∧ 𝑥𝐶) ∧ 𝑥 = 𝐴) → ((𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
10 nfv 1461 . . . . . 6 𝑥 𝐴 ∈ V
11 nfnfc1 2222 . . . . . 6 𝑥𝑥𝐶
1210, 11nfan 1497 . . . . 5 𝑥(𝐴 ∈ V ∧ 𝑥𝐶)
13 nfcsb1v 2938 . . . . . . 7 𝑥𝐴 / 𝑥𝐵
1413a1i 9 . . . . . 6 ((𝐴 ∈ V ∧ 𝑥𝐶) → 𝑥𝐴 / 𝑥𝐵)
15 simpr 108 . . . . . 6 ((𝐴 ∈ V ∧ 𝑥𝐶) → 𝑥𝐶)
1614, 15nfeqd 2233 . . . . 5 ((𝐴 ∈ V ∧ 𝑥𝐶) → Ⅎ𝑥𝐴 / 𝑥𝐵 = 𝐶)
174, 9, 12, 16sbciedf 2849 . . . 4 ((𝐴 ∈ V ∧ 𝑥𝐶) → ([𝐴 / 𝑥](𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
183, 17sylibd 147 . . 3 ((𝐴 ∈ V ∧ 𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → 𝐴 / 𝑥𝐵 = 𝐶))
1913a1i 9 . . . . . . . 8 (𝑥𝐶𝑥𝐴 / 𝑥𝐵)
20 id 19 . . . . . . . 8 (𝑥𝐶𝑥𝐶)
2119, 20nfeqd 2233 . . . . . . 7 (𝑥𝐶 → Ⅎ𝑥𝐴 / 𝑥𝐵 = 𝐶)
2211, 21nfan1 1496 . . . . . 6 𝑥(𝑥𝐶𝐴 / 𝑥𝐵 = 𝐶)
237biimprcd 158 . . . . . . 7 (𝐴 / 𝑥𝐵 = 𝐶 → (𝑥 = 𝐴𝐵 = 𝐶))
2423adantl 271 . . . . . 6 ((𝑥𝐶𝐴 / 𝑥𝐵 = 𝐶) → (𝑥 = 𝐴𝐵 = 𝐶))
2522, 24alrimi 1455 . . . . 5 ((𝑥𝐶𝐴 / 𝑥𝐵 = 𝐶) → ∀𝑥(𝑥 = 𝐴𝐵 = 𝐶))
2625ex 113 . . . 4 (𝑥𝐶 → (𝐴 / 𝑥𝐵 = 𝐶 → ∀𝑥(𝑥 = 𝐴𝐵 = 𝐶)))
2726adantl 271 . . 3 ((𝐴 ∈ V ∧ 𝑥𝐶) → (𝐴 / 𝑥𝐵 = 𝐶 → ∀𝑥(𝑥 = 𝐴𝐵 = 𝐶)))
2818, 27impbid 127 . 2 ((𝐴 ∈ V ∧ 𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
291, 28sylan 277 1 ((𝐴𝑉𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1282   = wceq 1284  wcel 1433  wnfc 2206  Vcvv 2601  [wsbc 2815  csb 2908
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-sbc 2816  df-csb 2909
This theorem is referenced by:  csbiedf  2943  csbieb  2944  csbiegf  2946
  Copyright terms: Public domain W3C validator