ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmpt2 GIF version

Theorem fvmpt2 5275
Description: Value of a function given by the "maps to" notation. (Contributed by FL, 21-Jun-2010.)
Hypothesis
Ref Expression
fvmpt2.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fvmpt2 ((𝑥𝐴𝐵𝐶) → (𝐹𝑥) = 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem fvmpt2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 2911 . . 3 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝑥 / 𝑥𝐵)
2 csbid 2915 . . 3 𝑥 / 𝑥𝐵 = 𝐵
31, 2syl6eq 2129 . 2 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵)
4 fvmpt2.1 . . 3 𝐹 = (𝑥𝐴𝐵)
5 nfcv 2219 . . . 4 𝑦𝐵
6 nfcsb1v 2938 . . . 4 𝑥𝑦 / 𝑥𝐵
7 csbeq1a 2916 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
85, 6, 7cbvmpt 3872 . . 3 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
94, 8eqtri 2101 . 2 𝐹 = (𝑦𝐴𝑦 / 𝑥𝐵)
103, 9fvmptg 5269 1 ((𝑥𝐴𝐵𝐶) → (𝐹𝑥) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  csb 2908  cmpt 3839  cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930
This theorem is referenced by:  fvmptssdm  5276  fvmpt2d  5278  fvmptdf  5279  mpteqb  5282  fvmptt  5283  fvmptf  5284  ralrnmpt  5330  rexrnmpt  5331  fmptco  5351  f1mpt  5431  offval2  5746  ofrfval2  5747  dom2lem  6275
  Copyright terms: Public domain W3C validator