![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbiotag | GIF version |
Description: Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.) |
Ref | Expression |
---|---|
csbiotag | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 2911 | . . 3 ⊢ (𝑧 = 𝐴 → ⦋𝑧 / 𝑥⦌(℩𝑦𝜑) = ⦋𝐴 / 𝑥⦌(℩𝑦𝜑)) | |
2 | dfsbcq2 2818 | . . . 4 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | 2 | iotabidv 4908 | . . 3 ⊢ (𝑧 = 𝐴 → (℩𝑦[𝑧 / 𝑥]𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑)) |
4 | 1, 3 | eqeq12d 2095 | . 2 ⊢ (𝑧 = 𝐴 → (⦋𝑧 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝑧 / 𝑥]𝜑) ↔ ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑))) |
5 | vex 2604 | . . 3 ⊢ 𝑧 ∈ V | |
6 | nfs1v 1856 | . . . 4 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
7 | 6 | nfiotaxy 4891 | . . 3 ⊢ Ⅎ𝑥(℩𝑦[𝑧 / 𝑥]𝜑) |
8 | sbequ12 1694 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
9 | 8 | iotabidv 4908 | . . 3 ⊢ (𝑥 = 𝑧 → (℩𝑦𝜑) = (℩𝑦[𝑧 / 𝑥]𝜑)) |
10 | 5, 7, 9 | csbief 2947 | . 2 ⊢ ⦋𝑧 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝑧 / 𝑥]𝜑) |
11 | 4, 10 | vtoclg 2658 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1284 ∈ wcel 1433 [wsb 1685 [wsbc 2815 ⦋csb 2908 ℩cio 4885 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-sbc 2816 df-csb 2909 df-sn 3404 df-uni 3602 df-iota 4887 |
This theorem is referenced by: csbfv12g 5230 |
Copyright terms: Public domain | W3C validator |