ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcfg GIF version

Theorem sbcfg 5065
Description: Distribute proper substitution through the function predicate with domain and codomain. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Assertion
Ref Expression
sbcfg (𝑋𝑉 → ([𝑋 / 𝑥]𝐹:𝐴𝐵𝑋 / 𝑥𝐹:𝑋 / 𝑥𝐴𝑋 / 𝑥𝐵))
Distinct variable groups:   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem sbcfg
StepHypRef Expression
1 df-f 4926 . . . 4 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
21a1i 9 . . 3 (𝑋𝑉 → (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵)))
32sbcbidv 2872 . 2 (𝑋𝑉 → ([𝑋 / 𝑥]𝐹:𝐴𝐵[𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹𝐵)))
4 sbcfng 5064 . . . 4 (𝑋𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴))
5 sbcssg 3350 . . . . 5 (𝑋𝑉 → ([𝑋 / 𝑥]ran 𝐹𝐵𝑋 / 𝑥ran 𝐹𝑋 / 𝑥𝐵))
6 csbrng 4802 . . . . . 6 (𝑋𝑉𝑋 / 𝑥ran 𝐹 = ran 𝑋 / 𝑥𝐹)
76sseq1d 3026 . . . . 5 (𝑋𝑉 → (𝑋 / 𝑥ran 𝐹𝑋 / 𝑥𝐵 ↔ ran 𝑋 / 𝑥𝐹𝑋 / 𝑥𝐵))
85, 7bitrd 186 . . . 4 (𝑋𝑉 → ([𝑋 / 𝑥]ran 𝐹𝐵 ↔ ran 𝑋 / 𝑥𝐹𝑋 / 𝑥𝐵))
94, 8anbi12d 456 . . 3 (𝑋𝑉 → (([𝑋 / 𝑥]𝐹 Fn 𝐴[𝑋 / 𝑥]ran 𝐹𝐵) ↔ (𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴 ∧ ran 𝑋 / 𝑥𝐹𝑋 / 𝑥𝐵)))
10 sbcan 2856 . . 3 ([𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ↔ ([𝑋 / 𝑥]𝐹 Fn 𝐴[𝑋 / 𝑥]ran 𝐹𝐵))
11 df-f 4926 . . 3 (𝑋 / 𝑥𝐹:𝑋 / 𝑥𝐴𝑋 / 𝑥𝐵 ↔ (𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴 ∧ ran 𝑋 / 𝑥𝐹𝑋 / 𝑥𝐵))
129, 10, 113bitr4g 221 . 2 (𝑋𝑉 → ([𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ↔ 𝑋 / 𝑥𝐹:𝑋 / 𝑥𝐴𝑋 / 𝑥𝐵))
133, 12bitrd 186 1 (𝑋𝑉 → ([𝑋 / 𝑥]𝐹:𝐴𝐵𝑋 / 𝑥𝐹:𝑋 / 𝑥𝐴𝑋 / 𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wcel 1433  [wsbc 2815  csb 2908  wss 2973  ran crn 4364   Fn wfn 4917  wf 4918
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-fun 4924  df-fn 4925  df-f 4926
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator