| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-n0 | GIF version | ||
| Description: Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| df-n0 | ⊢ ℕ0 = (ℕ ∪ {0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cn0 8288 | . 2 class ℕ0 | |
| 2 | cn 8039 | . . 3 class ℕ | |
| 3 | cc0 6981 | . . . 4 class 0 | |
| 4 | 3 | csn 3398 | . . 3 class {0} |
| 5 | 2, 4 | cun 2971 | . 2 class (ℕ ∪ {0}) |
| 6 | 1, 5 | wceq 1284 | 1 wff ℕ0 = (ℕ ∪ {0}) |
| Colors of variables: wff set class |
| This definition is referenced by: elnn0 8290 nnssnn0 8291 nn0ssre 8292 nn0ex 8294 dfn2 8301 nn0addcl 8323 nn0mulcl 8324 nn0ssz 8369 |
| Copyright terms: Public domain | W3C validator |