| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ssre | GIF version | ||
| Description: Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| nn0ssre | ⊢ ℕ0 ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0 8289 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 2 | nnssre 8043 | . . 3 ⊢ ℕ ⊆ ℝ | |
| 3 | 0re 7119 | . . . 4 ⊢ 0 ∈ ℝ | |
| 4 | snssi 3529 | . . . 4 ⊢ (0 ∈ ℝ → {0} ⊆ ℝ) | |
| 5 | 3, 4 | ax-mp 7 | . . 3 ⊢ {0} ⊆ ℝ |
| 6 | 2, 5 | unssi 3147 | . 2 ⊢ (ℕ ∪ {0}) ⊆ ℝ |
| 7 | 1, 6 | eqsstri 3029 | 1 ⊢ ℕ0 ⊆ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 1433 ∪ cun 2971 ⊆ wss 2973 {csn 3398 ℝcr 6980 0cc0 6981 ℕcn 8039 ℕ0cn0 8288 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-cnex 7067 ax-resscn 7068 ax-1re 7070 ax-addrcl 7073 ax-rnegex 7085 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-int 3637 df-inn 8040 df-n0 8289 |
| This theorem is referenced by: nn0sscn 8293 nn0re 8297 nn0rei 8299 nn0red 8342 |
| Copyright terms: Public domain | W3C validator |