HomeHome Intuitionistic Logic Explorer
Theorem List (p. 83 of 108)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8201-8300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem1lt2 8201 1 is less than 2. (Contributed by NM, 24-Feb-2005.)
1 < 2
 
Theorem2lt3 8202 2 is less than 3. (Contributed by NM, 26-Sep-2010.)
2 < 3
 
Theorem1lt3 8203 1 is less than 3. (Contributed by NM, 26-Sep-2010.)
1 < 3
 
Theorem3lt4 8204 3 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.)
3 < 4
 
Theorem2lt4 8205 2 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.)
2 < 4
 
Theorem1lt4 8206 1 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.)
1 < 4
 
Theorem4lt5 8207 4 is less than 5. (Contributed by Mario Carneiro, 15-Sep-2013.)
4 < 5
 
Theorem3lt5 8208 3 is less than 5. (Contributed by Mario Carneiro, 15-Sep-2013.)
3 < 5
 
Theorem2lt5 8209 2 is less than 5. (Contributed by Mario Carneiro, 15-Sep-2013.)
2 < 5
 
Theorem1lt5 8210 1 is less than 5. (Contributed by Mario Carneiro, 15-Sep-2013.)
1 < 5
 
Theorem5lt6 8211 5 is less than 6. (Contributed by Mario Carneiro, 15-Sep-2013.)
5 < 6
 
Theorem4lt6 8212 4 is less than 6. (Contributed by Mario Carneiro, 15-Sep-2013.)
4 < 6
 
Theorem3lt6 8213 3 is less than 6. (Contributed by Mario Carneiro, 15-Sep-2013.)
3 < 6
 
Theorem2lt6 8214 2 is less than 6. (Contributed by Mario Carneiro, 15-Sep-2013.)
2 < 6
 
Theorem1lt6 8215 1 is less than 6. (Contributed by NM, 19-Oct-2012.)
1 < 6
 
Theorem6lt7 8216 6 is less than 7. (Contributed by Mario Carneiro, 15-Sep-2013.)
6 < 7
 
Theorem5lt7 8217 5 is less than 7. (Contributed by Mario Carneiro, 15-Sep-2013.)
5 < 7
 
Theorem4lt7 8218 4 is less than 7. (Contributed by Mario Carneiro, 15-Sep-2013.)
4 < 7
 
Theorem3lt7 8219 3 is less than 7. (Contributed by Mario Carneiro, 15-Sep-2013.)
3 < 7
 
Theorem2lt7 8220 2 is less than 7. (Contributed by Mario Carneiro, 15-Sep-2013.)
2 < 7
 
Theorem1lt7 8221 1 is less than 7. (Contributed by Mario Carneiro, 15-Sep-2013.)
1 < 7
 
Theorem7lt8 8222 7 is less than 8. (Contributed by Mario Carneiro, 15-Sep-2013.)
7 < 8
 
Theorem6lt8 8223 6 is less than 8. (Contributed by Mario Carneiro, 15-Sep-2013.)
6 < 8
 
Theorem5lt8 8224 5 is less than 8. (Contributed by Mario Carneiro, 15-Sep-2013.)
5 < 8
 
Theorem4lt8 8225 4 is less than 8. (Contributed by Mario Carneiro, 15-Sep-2013.)
4 < 8
 
Theorem3lt8 8226 3 is less than 8. (Contributed by Mario Carneiro, 15-Sep-2013.)
3 < 8
 
Theorem2lt8 8227 2 is less than 8. (Contributed by Mario Carneiro, 15-Sep-2013.)
2 < 8
 
Theorem1lt8 8228 1 is less than 8. (Contributed by Mario Carneiro, 15-Sep-2013.)
1 < 8
 
Theorem8lt9 8229 8 is less than 9. (Contributed by Mario Carneiro, 19-Feb-2014.)
8 < 9
 
Theorem7lt9 8230 7 is less than 9. (Contributed by Mario Carneiro, 9-Mar-2015.)
7 < 9
 
Theorem6lt9 8231 6 is less than 9. (Contributed by Mario Carneiro, 9-Mar-2015.)
6 < 9
 
Theorem5lt9 8232 5 is less than 9. (Contributed by Mario Carneiro, 9-Mar-2015.)
5 < 9
 
Theorem4lt9 8233 4 is less than 9. (Contributed by Mario Carneiro, 9-Mar-2015.)
4 < 9
 
Theorem3lt9 8234 3 is less than 9. (Contributed by Mario Carneiro, 9-Mar-2015.)
3 < 9
 
Theorem2lt9 8235 2 is less than 9. (Contributed by Mario Carneiro, 9-Mar-2015.)
2 < 9
 
Theorem1lt9 8236 1 is less than 9. (Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 9-Mar-2015.)
1 < 9
 
Theorem0ne2 8237 0 is not equal to 2. (Contributed by David A. Wheeler, 8-Dec-2018.)
0 ≠ 2
 
Theorem1ne2 8238 1 is not equal to 2. (Contributed by NM, 19-Oct-2012.)
1 ≠ 2
 
Theorem1le2 8239 1 is less than or equal to 2 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
1 ≤ 2
 
Theorem2cnne0 8240 2 is a nonzero complex number (common case). (Contributed by David A. Wheeler, 7-Dec-2018.)
(2 ∈ ℂ ∧ 2 ≠ 0)
 
Theorem2rene0 8241 2 is a nonzero real number (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(2 ∈ ℝ ∧ 2 ≠ 0)
 
Theorem1le3 8242 1 is less than or equal to 3. (Contributed by David A. Wheeler, 8-Dec-2018.)
1 ≤ 3
 
Theoremneg1mulneg1e1 8243 -1 · -1 is 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(-1 · -1) = 1
 
Theoremhalfre 8244 One-half is real. (Contributed by David A. Wheeler, 8-Dec-2018.)
(1 / 2) ∈ ℝ
 
Theoremhalfcn 8245 One-half is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
(1 / 2) ∈ ℂ
 
Theoremhalfgt0 8246 One-half is greater than zero. (Contributed by NM, 24-Feb-2005.)
0 < (1 / 2)
 
Theoremhalfge0 8247 One-half is not negative. (Contributed by AV, 7-Jun-2020.)
0 ≤ (1 / 2)
 
Theoremhalflt1 8248 One-half is less than one. (Contributed by NM, 24-Feb-2005.)
(1 / 2) < 1
 
Theorem1mhlfehlf 8249 Prove that 1 - 1/2 = 1/2. (Contributed by David A. Wheeler, 4-Jan-2017.)
(1 − (1 / 2)) = (1 / 2)
 
Theorem8th4div3 8250 An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007.)
((1 / 8) · (4 / 3)) = (1 / 6)
 
Theoremhalfpm6th 8251 One half plus or minus one sixth. (Contributed by Paul Chapman, 17-Jan-2008.)
(((1 / 2) − (1 / 6)) = (1 / 3) ∧ ((1 / 2) + (1 / 6)) = (2 / 3))
 
Theoremit0e0 8252 i times 0 equals 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(i · 0) = 0
 
Theorem2mulicn 8253 (2 · i) ∈ ℂ (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(2 · i) ∈ ℂ
 
Theoremiap0 8254 The imaginary unit i is apart from zero. (Contributed by Jim Kingdon, 9-Mar-2020.)
i # 0
 
Theorem2muliap0 8255 2 · i is apart from zero. (Contributed by Jim Kingdon, 9-Mar-2020.)
(2 · i) # 0
 
Theorem2muline0 8256 (2 · i) ≠ 0. See also 2muliap0 8255. (Contributed by David A. Wheeler, 8-Dec-2018.)
(2 · i) ≠ 0
 
3.4.5  Simple number properties
 
Theoremhalfcl 8257 Closure of half of a number (common case). (Contributed by NM, 1-Jan-2006.)
(𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ)
 
Theoremrehalfcl 8258 Real closure of half. (Contributed by NM, 1-Jan-2006.)
(𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
 
Theoremhalf0 8259 Half of a number is zero iff the number is zero. (Contributed by NM, 20-Apr-2006.)
(𝐴 ∈ ℂ → ((𝐴 / 2) = 0 ↔ 𝐴 = 0))
 
Theorem2halves 8260 Two halves make a whole. (Contributed by NM, 11-Apr-2005.)
(𝐴 ∈ ℂ → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴)
 
Theoremhalfpos2 8261 A number is positive iff its half is positive. (Contributed by NM, 10-Apr-2005.)
(𝐴 ∈ ℝ → (0 < 𝐴 ↔ 0 < (𝐴 / 2)))
 
Theoremhalfpos 8262 A positive number is greater than its half. (Contributed by NM, 28-Oct-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ ℝ → (0 < 𝐴 ↔ (𝐴 / 2) < 𝐴))
 
Theoremhalfnneg2 8263 A number is nonnegative iff its half is nonnegative. (Contributed by NM, 9-Dec-2005.)
(𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 2)))
 
Theoremhalfaddsubcl 8264 Closure of half-sum and half-difference. (Contributed by Paul Chapman, 12-Oct-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) / 2) ∈ ℂ ∧ ((𝐴𝐵) / 2) ∈ ℂ))
 
Theoremhalfaddsub 8265 Sum and difference of half-sum and half-difference. (Contributed by Paul Chapman, 12-Oct-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)) = 𝐴 ∧ (((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)) = 𝐵))
 
Theoremlt2halves 8266 A sum is less than the whole if each term is less than half. (Contributed by NM, 13-Dec-2006.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < (𝐶 / 2) ∧ 𝐵 < (𝐶 / 2)) → (𝐴 + 𝐵) < 𝐶))
 
Theoremaddltmul 8267 Sum is less than product for numbers greater than 2. (Contributed by Stefan Allan, 24-Sep-2010.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵))
 
Theoremnominpos 8268* There is no smallest positive real number. (Contributed by NM, 28-Oct-2004.)
¬ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥))
 
Theoremavglt1 8269 Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
 
Theoremavglt2 8270 Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
 
Theoremavgle1 8271 Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐴 ≤ ((𝐴 + 𝐵) / 2)))
 
Theoremavgle2 8272 Ordering property for average. (Contributed by Jeff Hankins, 15-Sep-2013.) (Revised by Mario Carneiro, 28-May-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ((𝐴 + 𝐵) / 2) ≤ 𝐵))
 
Theorem2timesd 8273 Two times a number. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴))
 
Theoremtimes2d 8274 A number times 2. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴 · 2) = (𝐴 + 𝐴))
 
Theoremhalfcld 8275 Closure of half of a number (frequently used special case). (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴 / 2) ∈ ℂ)
 
Theorem2halvesd 8276 Two halves make a whole. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴)
 
Theoremrehalfcld 8277 Real closure of half. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (𝐴 / 2) ∈ ℝ)
 
Theoremlt2halvesd 8278 A sum is less than the whole if each term is less than half. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 < (𝐶 / 2))    &   (𝜑𝐵 < (𝐶 / 2))       (𝜑 → (𝐴 + 𝐵) < 𝐶)
 
Theoremrehalfcli 8279 Half a real number is real. Inference form. (Contributed by David Moews, 28-Feb-2017.)
𝐴 ∈ ℝ       (𝐴 / 2) ∈ ℝ
 
Theoremadd1p1 8280 Adding two times 1 to a number. (Contributed by AV, 22-Sep-2018.)
(𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2))
 
Theoremsub1m1 8281 Subtracting two times 1 from a number. (Contributed by AV, 23-Oct-2018.)
(𝑁 ∈ ℂ → ((𝑁 − 1) − 1) = (𝑁 − 2))
 
Theoremcnm2m1cnm3 8282 Subtracting 2 and afterwards 1 from a number results in the difference between the number and 3. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
(𝐴 ∈ ℂ → ((𝐴 − 2) − 1) = (𝐴 − 3))
 
Theoremxp1d2m1eqxm1d2 8283 A complex number increased by 1, then divided by 2, then decreased by 1 equals the complex number decreased by 1 and then divided by 2. (Contributed by AV, 24-May-2020.)
(𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) = ((𝑋 − 1) / 2))
 
Theoremdiv4p1lem1div2 8284 An integer greater than 5, divided by 4 and increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
 
3.4.6  The Archimedean property
 
Theoremarch 8285* Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.)
(𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛)
 
Theoremnnrecl 8286* There exists a positive integer whose reciprocal is less than a given positive real. Exercise 3 of [Apostol] p. 28. (Contributed by NM, 8-Nov-2004.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴)
 
Theorembndndx 8287* A bounded real sequence 𝐴(𝑘) is less than or equal to at least one of its indices. (Contributed by NM, 18-Jan-2008.)
(∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴𝑥) → ∃𝑘 ∈ ℕ 𝐴𝑘)
 
3.4.7  Nonnegative integers (as a subset of complex numbers)
 
Syntaxcn0 8288 Extend class notation to include the class of nonnegative integers.
class 0
 
Definitiondf-n0 8289 Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
0 = (ℕ ∪ {0})
 
Theoremelnn0 8290 Nonnegative integers expressed in terms of naturals and zero. (Contributed by Raph Levien, 10-Dec-2002.)
(𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
 
Theoremnnssnn0 8291 Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
ℕ ⊆ ℕ0
 
Theoremnn0ssre 8292 Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.)
0 ⊆ ℝ
 
Theoremnn0sscn 8293 Nonnegative integers are a subset of the complex numbers.) (Contributed by NM, 9-May-2004.)
0 ⊆ ℂ
 
Theoremnn0ex 8294 The set of nonnegative integers exists. (Contributed by NM, 18-Jul-2004.)
0 ∈ V
 
Theoremnnnn0 8295 A positive integer is a nonnegative integer. (Contributed by NM, 9-May-2004.)
(𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
 
Theoremnnnn0i 8296 A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.)
𝑁 ∈ ℕ       𝑁 ∈ ℕ0
 
Theoremnn0re 8297 A nonnegative integer is a real number. (Contributed by NM, 9-May-2004.)
(𝐴 ∈ ℕ0𝐴 ∈ ℝ)
 
Theoremnn0cn 8298 A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.)
(𝐴 ∈ ℕ0𝐴 ∈ ℂ)
 
Theoremnn0rei 8299 A nonnegative integer is a real number. (Contributed by NM, 14-May-2003.)
𝐴 ∈ ℕ0       𝐴 ∈ ℝ
 
Theoremnn0cni 8300 A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.)
𝐴 ∈ ℕ0       𝐴 ∈ ℂ
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10795
  Copyright terms: Public domain < Previous  Next >