ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotabidv GIF version

Theorem riotabidv 5490
Description: Formula-building deduction rule for restricted iota. (Contributed by NM, 15-Sep-2011.)
Hypothesis
Ref Expression
riotabidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
riotabidv (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐴 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem riotabidv
StepHypRef Expression
1 biidd 170 . . . 4 (𝜑 → (𝑥𝐴𝑥𝐴))
2 riotabidv.1 . . . 4 (𝜑 → (𝜓𝜒))
31, 2anbi12d 456 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
43iotabidv 4908 . 2 (𝜑 → (℩𝑥(𝑥𝐴𝜓)) = (℩𝑥(𝑥𝐴𝜒)))
5 df-riota 5488 . 2 (𝑥𝐴 𝜓) = (℩𝑥(𝑥𝐴𝜓))
6 df-riota 5488 . 2 (𝑥𝐴 𝜒) = (℩𝑥(𝑥𝐴𝜒))
74, 5, 63eqtr4g 2138 1 (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  cio 4885  crio 5487
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-uni 3602  df-iota 4887  df-riota 5488
This theorem is referenced by:  riotaeqbidv  5491  csbriotag  5500  infvalti  6435  caucvgsrlemfv  6967  axcaucvglemval  7063  axcaucvglemcau  7064  subval  7300  divvalap  7762  divfnzn  8706  flval  9276  cjval  9732  sqrtrval  9886
  Copyright terms: Public domain W3C validator