![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snriota | GIF version |
Description: A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.) |
Ref | Expression |
---|---|
snriota | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {(℩𝑥 ∈ 𝐴 𝜑)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 2355 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | sniota 4914 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {(℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))}) | |
3 | 1, 2 | sylbi 119 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {(℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))}) |
4 | df-rab 2357 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
5 | df-riota 5488 | . . 3 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
6 | 5 | sneqi 3410 | . 2 ⊢ {(℩𝑥 ∈ 𝐴 𝜑)} = {(℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))} |
7 | 3, 4, 6 | 3eqtr4g 2138 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {(℩𝑥 ∈ 𝐴 𝜑)}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∈ wcel 1433 ∃!weu 1941 {cab 2067 ∃!wreu 2350 {crab 2352 {csn 3398 ℩cio 4885 ℩crio 5487 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-un 2977 df-sn 3404 df-pr 3405 df-uni 3602 df-iota 4887 df-riota 5488 |
This theorem is referenced by: divalgmod 10327 |
Copyright terms: Public domain | W3C validator |