ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconstmpt GIF version

Theorem fconstmpt 4405
Description: Representation of a constant function using the mapping operation. (Note that 𝑥 cannot appear free in 𝐵.) (Contributed by NM, 12-Oct-1999.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
fconstmpt (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem fconstmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 velsn 3415 . . . 4 (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵)
21anbi2i 444 . . 3 ((𝑥𝐴𝑦 ∈ {𝐵}) ↔ (𝑥𝐴𝑦 = 𝐵))
32opabbii 3845 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ {𝐵})} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
4 df-xp 4369 . 2 (𝐴 × {𝐵}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ {𝐵})}
5 df-mpt 3841 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
63, 4, 53eqtr4i 2111 1 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1284  wcel 1433  {csn 3398  {copab 3838  cmpt 3839   × cxp 4361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-sn 3404  df-opab 3840  df-mpt 3841  df-xp 4369
This theorem is referenced by:  fconst  5102  fcoconst  5355  fmptsn  5373  ofc12  5751  caofinvl  5753  xpexgALT  5780
  Copyright terms: Public domain W3C validator