![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df2o2 | GIF version |
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.) |
Ref | Expression |
---|---|
df2o2 | ⊢ 2𝑜 = {∅, {∅}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o3 6037 | . 2 ⊢ 2𝑜 = {∅, 1𝑜} | |
2 | df1o2 6036 | . . 3 ⊢ 1𝑜 = {∅} | |
3 | 2 | preq2i 3473 | . 2 ⊢ {∅, 1𝑜} = {∅, {∅}} |
4 | 1, 3 | eqtri 2101 | 1 ⊢ 2𝑜 = {∅, {∅}} |
Colors of variables: wff set class |
Syntax hints: = wceq 1284 ∅c0 3251 {csn 3398 {cpr 3399 1𝑜c1o 6017 2𝑜c2o 6018 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-dif 2975 df-un 2977 df-nul 3252 df-sn 3404 df-pr 3405 df-suc 4126 df-1o 6024 df-2o 6025 |
This theorem is referenced by: 2dom 6308 |
Copyright terms: Public domain | W3C validator |